
Software Requirements Specification for Double
Pendulum

Dong Chen

November 11, 2024

Contents
1 Reference Material 3

1.1 Table of Units . 3
1.2 Table of Symbols . 3
1.3 Abbreviations and Acronyms . 4

2 Introduction 5
2.1 Purpose of Document . 5
2.2 Scope of Requirements . 6
2.3 Characteristics of Intended Reader . 6
2.4 Organization of Document . 6

3 General System Description 6
3.1 System Context . 6
3.2 User Characteristics . 7
3.3 System Constraints . 7

4 Specific System Description 8
4.1 Problem Description . 8

4.1.1 Terminology and Definitions . 8
4.1.2 Physical System Description . 8
4.1.3 Goal Statements . 9

4.2 Solution Characteristics Specification . 9
4.2.1 Assumptions . 9
4.2.2 Theoretical Models . 10
4.2.3 General Definitions . 11
4.2.4 Data Definitions . 23
4.2.5 Instance Models . 30
4.2.6 Data Constraints . 33
4.2.7 Properties of a Correct Solution . 34

1

5 Requirements 34
5.1 Functional Requirements . 34
5.2 Non-Functional Requirements . 35

6 Traceability Matrices and Graphs 35

7 Values of Auxiliary Constants 39

8 References 40

2

1 Reference Material
This section records information for easy reference.

1.1 Table of Units
The unit system used throughout is SI (Système International d’Unités). In addition to the
basic units, several derived units are also used. For each unit, the Table of Units lists the
symbol, a description, and the SI name.

Table 1: Table of Units

kg mass kilogram
m length metre
N force newton
rad angle radian
s time second

Symbol Description SI Name

1.2 Table of Symbols
The symbols used in this document are summarized in the Table of Symbols along with
their units. Throughout the document, symbols in bold will represent vectors, and scalars
otherwise. The symbols are listed in alphabetical order. For vector quantities, the units
shown are for each component of the vector.

Table 2: Table of Symbols

𝑎x1 Horizontal acceleration of the first object m
s2

𝑎x2 Horizontal acceleration of the second object m
s2

𝑎y1 Vertical acceleration of the first object m
s2

𝑎y2 Vertical acceleration of the second object m
s2

𝐚(𝑡) Acceleration m
s2

𝐅 Force N
𝑔 Magnitude of gravitational acceleration m

s2

𝐠 Gravitational acceleration m
s2

̂𝐢 Unit vector –

Symbol Description Units

Continued on next page

3

Table 2: Table of Symbols (Continued)

𝐿1 Length of the first rod m
𝐿2 Length of the second rod m
𝑚 Mass kg
𝑚1 Mass of the first object kg
𝑚2 Mass of the second object kg
𝑝x1 Horizontal position of the first object m
𝑝x2 Horizontal position of the second object m
𝑝y1 Vertical position of the first object m
𝑝y2 Vertical position of the second object m
𝐩(𝑡) Position m
𝐓 Tension N
𝐓1 Tension of the first object N
𝐓2 Tension of the second object N
𝑡 Time s
theta Dependent variables rad
𝑣x1 Horizontal velocity of the first object m

s

𝑣x2 Horizontal velocity of the second object m
s

𝑣y1 Vertical velocity of the first object m
s

𝑣y2 Vertical velocity of the second object m
s

𝐯(𝑡) Velocity m
s

𝑤1 Angular velocity of the first object rad
s

𝑤2 Angular velocity of the second object rad
s

𝛼1 Angular acceleration of the first object rad
s2

𝛼2 Angular acceleration of the second object rad
s2

𝜃1 Angle of the first rod rad
𝜃2 Angle of the second rod rad
𝜋 Ratio of circumference to diameter for any circle –

Symbol Description Units

1.3 Abbreviations and Acronyms

4

Table 3: Abbreviations and Acronyms

2D Two-Dimensional
A Assumption
DD Data Definition
DblPend Double Pendulum
GD General Definition
GS Goal Statement
IM Instance Model
PS Physical System Description
R Requirement
RefBy Referenced by
Refname Reference Name
SRS Software Requirements Specification
TM Theoretical Model
Uncert. Typical Uncertainty

Abbreviation Full Form

2 Introduction
A pendulum consists of mass attached to the end of a rod and its moving curve is highly
sensitive to initial conditions. Therefore, it is useful to have a program to simulate the
motion of the pendulum to exhibit its chaotic characteristics. The document describes the
program called Double Pendulum , which is based on the original, manually created version
of Double Pendulum.

The following section provides an overview of the Software Requirements Specification
(SRS) for Double Pendulum. This section explains the purpose of this document, the scope
of the requirements, the characteristics of the intended reader, and the organization of the
document.

2.1 Purpose of Document
The primary purpose of this document is to record the requirements of DblPend. Goals,
assumptions, theoretical models, definitions, and other model derivation information are
specified, allowing the reader to fully understand and verify the purpose and scientific basis of
DblPend. With the exception of system constraints, this SRS will remain abstract, describing
what problem is being solved, but not how to solve it.

This document will be used as a starting point for subsequent development phases, in-
cluding writing the design specification and the software verification and validation plan.

5

https://github.com/Zhang-Zhi-ZZ/CAS741Project/tree/master/Double%20Pendulum

The design document will show how the requirements are to be realized, including decisions
on the numerical algorithms and programming environment. The verification and validation
plan will show the steps that will be used to increase confidence in the software documen-
tation and the implementation. Although the SRS fits in a series of documents that follow
the so-called waterfall model, the actual development process is not constrained in any way.
Even when the waterfall model is not followed, as Parnas and Clements point out [6], the
most logical way to present the documentation is still to “fake” a rational design process.

2.2 Scope of Requirements
The scope of the requirements includes the analysis of a two-dimensional (2D) pendulum
motion problem with various initial conditions.

2.3 Characteristics of Intended Reader
Reviewers of this documentation should have an understanding of undergraduate level 2
physics, undergraduate level 1 calculus, and ordinary differential equations. The users of
DblPend can have a lower level of expertise, as explained in Sec:User Characteristics.

2.4 Organization of Document
The organization of this document follows the template for an SRS for scientific computing
software proposed by [5], [8], [9], and [7]. The presentation follows the standard pattern of
presenting goals, theories, definitions, and assumptions. For readers that would like a more
bottom up approach, they can start reading the instance models and trace back to find any
additional information they require.

The goal statements are refined to the theoretical models and the theoretical models to
the instance models.

3 General System Description
This section provides general information about the system. It identifies the interfaces
between the system and its environment, describes the user characteristics, and lists the
system constraints.

3.1 System Context
Fig:sysCtxDiag shows the system context. A circle represents an entity external to the
software, the user in this case. A rectangle represents the software system itself (DblPend).
Arrows are used to show the data flow between the system and its environment.

6

Figure 1: System Context

The interaction between the product and the user is through an application programming
interface. The responsibilities of the user and the system are as follows:

• User Responsibilities

– Provide initial conditions of the physical state of the motion and the input data
related to the Double Pendulum, ensuring no errors in the data entry.

– Ensure that consistent units are used for input variables.
– Ensure required software assumptions are appropriate for any particular problem

input to the software.

• DblPend Responsibilities

– Detect data type mismatch, such as a string of characters input instead of a
floating point number.

– Determine if the inputs satisfy the required physical and software constraints.
– Calculate the required outputs.
– Generate the required graphs.

3.2 User Characteristics
The end user of DblPend should have an understanding of high school physics, high school
calculus and ordinary differential equations.

3.3 System Constraints
There are no system constraints.

7

4 Specific System Description
This section first presents the problem description, which gives a high-level view of the
problem to be solved. This is followed by the solution characteristics specification, which
presents the assumptions, theories, and definitions that are used.

4.1 Problem Description
A system is needed to predict the motion of a double pendulum.

4.1.1 Terminology and Definitions

This subsection provides a list of terms that are used in the subsequent sections and their
meaning, with the purpose of reducing ambiguity and making it easier to correctly under-
stand the requirements.

• Gravity: The force that attracts one physical body with mass to another.

• Cartesian coordinate system: A coordinate system that specifies each point uniquely
in a plane by a set of numerical coordinates, which are the signed distances to the
point from two fixed perpendicular oriented lines, measured in the same unit of length
(from [2]).

4.1.2 Physical System Description

The physical system of DblPend, as shown in Fig:dblpend, includes the following elements:

PS1: The first rod (with length of the first rod 𝐿1).

PS2: The second rod (with length of the second rod 𝐿2).

PS3: The first object.

PS4: The second object.

8

Figure 2: The physical system

4.1.3 Goal Statements

Given the masses, length of the rods, initial angle of the masses and the gravitational con-
stant, the goal statement is:

motionMass: Calculate the motion of the masses.

4.2 Solution Characteristics Specification
The instance models that govern DblPend are presented in the Instance Model Section. The
information to understand the meaning of the instance models and their derivation is also
presented, so that the instance models can be verified.

4.2.1 Assumptions

This section simplifies the original problem and helps in developing the theoretical models
by filling in the missing information for the physical system. The assumptions refine the
scope by providing more detail.

twoDMotion: The pendulum motion is two-dimensional (2D).

cartSys: A Cartesian coordinate system is used.

cartSysR: The Cartesian coordinate system is right-handed where positive 𝑥-axis and 𝑦-axis
point right up.

yAxisDir: The direction of the 𝑦-axis is directed opposite to gravity.

startOrigin: The first rod is attached to the origin.

9

firstPend: The first rod has two sides. One side attaches to the origin. Another side attaches
to the first object.

secondPend: The second rod has two sides. One side attaches to the first object. Another
side attaches to the second object.

4.2.2 Theoretical Models

This section focuses on the general equations and laws that DblPend is based on.

Refname TM:acceleration
Label Acceleration

Equation
𝐚(𝑡) = 𝑑𝐯(𝑡)

𝑑𝑡

Description
𝐚(𝑡) is the acceleration (m

s2)
𝑡 is the time (s)
𝐯(𝑡) is the velocity (m

s)

Source [1]

RefBy

Refname TM:velocity
Label Velocity

Equation
𝐯(𝑡) = 𝑑𝐩(𝑡)

𝑑𝑡

Description
𝐯(𝑡) is the velocity (m

s)
𝑡 is the time (s)
𝐩(𝑡) is the position (m)

Source [3]

RefBy

10

Refname TM:NewtonSecLawMot
Label Newton’s second law of motion

Equation
𝐅 = 𝑚 𝐚(𝑡)

Description
𝐅 is the force (N)
𝑚 is the mass (kg)
𝐚(𝑡) is the acceleration (m

s2)

Notes The net force 𝐅 on a body is proportional to the acceleration 𝐚(𝑡) of the
body, where 𝑚 denotes the mass of the body as the constant of
proportionality.

Source –

RefBy

4.2.3 General Definitions

This section collects the laws and equations that will be used to build the instance models.

11

Refname GD:velocityX1
Label The 𝑥-component of velocity of the first object

Units m
s

Equation
𝑣x1 = 𝑤1 𝐿1 cos (𝜃1)

Description
𝑣x1 is the horizontal velocity of the first object (m

s)
𝑤1 is the angular velocity of the first object (rad

s)
𝐿1 is the length of the first rod (m)
𝜃1 is the angle of the first rod (rad)

Source –

RefBy

Detailed derivation of the 𝑥-component of velocity: At a given point in time, velocity
is defined in DD:positionGDD

𝐯(𝑡) = 𝑑𝐩(𝑡)
𝑑𝑡

We also know the horizontal position that is defined in DD:positionXDD1

𝑝x1 = 𝐿1 sin (𝜃1)

Applying this,

𝑣x1 = 𝑑𝐿1 sin(𝜃1)
𝑑𝑡

𝐿1 is constant with respect to time, so

𝑣x1 = 𝐿1
𝑑 sin(𝜃1)

𝑑𝑡

Therefore, using the chain rule,

𝑣x1 = 𝑤1 𝐿1 cos (𝜃1)

12

Refname GD:velocityY1
Label The 𝑦-component of velocity of the first object

Units m
s

Equation
𝑣y1 = 𝑤1 𝐿1 sin (𝜃1)

Description
𝑣y1 is the vertical velocity of the first object (m

s)
𝑤1 is the angular velocity of the first object (rad

s)
𝐿1 is the length of the first rod (m)
𝜃1 is the angle of the first rod (rad)

Source –

RefBy

Detailed derivation of the 𝑦-component of velocity: At a given point in time, velocity
is defined in DD:positionGDD

𝐯(𝑡) = 𝑑𝐩(𝑡)
𝑑𝑡

We also know the vertical position that is defined in DD:positionYDD1

𝑝y1 = −𝐿1 cos (𝜃1)

Applying this,

𝑣y1 = − (𝑑𝐿1 cos(𝜃1)
𝑑𝑡)

𝐿1 is constant with respect to time, so

𝑣y1 = −𝐿1
𝑑 cos(𝜃1)

𝑑𝑡

Therefore, using the chain rule,

𝑣y1 = 𝑤1 𝐿1 sin (𝜃1)

13

Refname GD:velocityX2
Label The 𝑥-component of velocity of the second object

Units m
s

Equation
𝑣x2 = 𝑣x1 + 𝑤2 𝐿2 cos (𝜃2)

Description
𝑣x2 is the horizontal velocity of the second object (m

s)
𝑣x1 is the horizontal velocity of the first object (m

s)
𝑤2 is the angular velocity of the second object (rad

s)
𝐿2 is the length of the second rod (m)
𝜃2 is the angle of the second rod (rad)

Source –

RefBy

Detailed derivation of the 𝑥-component of velocity: At a given point in time, velocity
is defined in DD:positionGDD

𝐯(𝑡) = 𝑑𝐩(𝑡)
𝑑𝑡

We also know the horizontal position that is defined in DD:positionXDD2

𝑝x2 = 𝑝x1 + 𝐿2 sin (𝜃2)

Applying this,

𝑣x2 = 𝑑𝑝x1+𝐿2 sin(𝜃2)
𝑑𝑡

𝐿1 is constant with respect to time, so

𝑣x2 = 𝑣x1 + 𝑤2 𝐿2 cos (𝜃2)

14

Refname GD:velocityY2
Label The 𝑦-component of velocity of the second object

Units m
s

Equation
𝑣y2 = 𝑣y1 + 𝑤2 𝐿2 sin (𝜃2)

Description
𝑣y2 is the vertical velocity of the second object (m

s)
𝑣y1 is the vertical velocity of the first object (m

s)
𝑤2 is the angular velocity of the second object (rad

s)
𝐿2 is the length of the second rod (m)
𝜃2 is the angle of the second rod (rad)

Source –

RefBy

Detailed derivation of the 𝑦-component of velocity: At a given point in time, velocity
is defined in DD:positionGDD

𝐯(𝑡) = 𝑑𝐩(𝑡)
𝑑𝑡

We also know the vertical position that is defined in DD:positionYDD2

𝑝y2 = 𝑝y1 − 𝐿2 cos (𝜃2)

Applying this,

𝑣y2 = − (𝑑𝑝y1−𝐿2 cos(𝜃2)
𝑑𝑡)

Therefore, using the chain rule,

𝑣y2 = 𝑣y1 + 𝑤2 𝐿2 sin (𝜃2)

15

Refname GD:accelerationX1
Label The 𝑥-component of acceleration of the first object

Units m
s2

Equation
𝑎x1 = −𝑤1

2 𝐿1 sin (𝜃1) + 𝛼1 𝐿1 cos (𝜃1)

Description
𝑎x1 is the horizontal acceleration of the first object (m

s2)
𝑤1 is the angular velocity of the first object (rad

s)
𝐿1 is the length of the first rod (m)
𝜃1 is the angle of the first rod (rad)
𝛼1 is the angular acceleration of the first object (rad

s2)

Source –

RefBy IM:calOfAngle2

Detailed derivation of the 𝑥-component of acceleration: Our acceleration is:

𝐚(𝑡) = 𝑑𝐯(𝑡)
𝑑𝑡

Earlier, we found the horizontal velocity to be

𝑣x1 = 𝑤1 𝐿1 cos (𝜃1)

Applying this to our equation for acceleration

𝑎x1 = 𝑑𝑤1 𝐿1 cos(𝜃1)
𝑑𝑡

By the product and chain rules, we find

𝑎x1 = 𝑑𝑤1
𝑑𝑡 𝐿1 cos (𝜃1) − 𝑤1 𝐿1 sin (𝜃1) 𝑑𝜃1

𝑑𝑡

Simplifying,

𝑎x1 = −𝑤1
2 𝐿1 sin (𝜃1) + 𝛼1 𝐿1 cos (𝜃1)

16

Refname GD:accelerationY1
Label The 𝑦-component of acceleration of the first object

Units m
s2

Equation
𝑎y1 = 𝑤1

2 𝐿1 cos (𝜃1) + 𝛼1 𝐿1 sin (𝜃1)

Description
𝑎y1 is the vertical acceleration of the first object (m

s2)
𝑤1 is the angular velocity of the first object (rad

s)
𝐿1 is the length of the first rod (m)
𝜃1 is the angle of the first rod (rad)
𝛼1 is the angular acceleration of the first object (rad

s2)

Source –

RefBy IM:calOfAngle2

Detailed derivation of the 𝑦-component of acceleration: Our acceleration is:

𝐚(𝑡) = 𝑑𝐯(𝑡)
𝑑𝑡

Earlier, we found the vertical velocity to be

𝑣y1 = 𝑤1 𝐿1 sin (𝜃1)

Applying this to our equation for acceleration

𝑎y1 = 𝑑𝑤1 𝐿1 sin(𝜃1)
𝑑𝑡

By the product and chain rules, we find

𝑎y1 = 𝑑𝑤1
𝑑𝑡 𝐿1 sin (𝜃1) + 𝑤1 𝐿1 cos (𝜃1) 𝑑𝜃1

𝑑𝑡

Simplifying,

𝑎y1 = 𝑤1
2 𝐿1 cos (𝜃1) + 𝛼1 𝐿1 sin (𝜃1)

17

Refname GD:accelerationX2
Label The 𝑥-component of acceleration of the second object

Units m
s2

Equation
𝑎x2 = 𝑎x1 − 𝑤2

2 𝐿2 sin (𝜃2) + 𝛼2 𝐿2 cos (𝜃2)

Description
𝑎x2 is the horizontal acceleration of the second object (m

s2)
𝑎x1 is the horizontal acceleration of the first object (m

s2)
𝑤2 is the angular velocity of the second object (rad

s)
𝐿2 is the length of the second rod (m)
𝜃2 is the angle of the second rod (rad)
𝛼2 is the angular acceleration of the second object (rad

s2)

Source –

RefBy IM:calOfAngle2

Detailed derivation of the 𝑥-component of acceleration: Our acceleration is:

𝐚(𝑡) = 𝑑𝐯(𝑡)
𝑑𝑡

Earlier, we found the horizontal velocity to be

𝑣x2 = 𝑣x1 + 𝑤2 𝐿2 cos (𝜃2)

Applying this to our equation for acceleration

𝑎x2 = 𝑑𝑣x1+𝑤2 𝐿2 cos(𝜃2)
𝑑𝑡

By the product and chain rules, we find

𝑎x2 = 𝑎x1 − 𝑤2
2 𝐿2 sin (𝜃2) + 𝛼2 𝐿2 cos (𝜃2)

18

Refname GD:accelerationY2
Label The 𝑦-component of acceleration of the second object

Units m
s2

Equation
𝑎y2 = 𝑎y1 + 𝑤2

2 𝐿2 cos (𝜃2) + 𝛼2 𝐿2 sin (𝜃2)

Description
𝑎y2 is the vertical acceleration of the second object (m

s2)
𝑎y1 is the vertical acceleration of the first object (m

s2)
𝑤2 is the angular velocity of the second object (rad

s)
𝐿2 is the length of the second rod (m)
𝜃2 is the angle of the second rod (rad)
𝛼2 is the angular acceleration of the second object (rad

s2)

Source –

RefBy IM:calOfAngle2

Detailed derivation of the 𝑦-component of acceleration: Our acceleration is:

𝐚(𝑡) = 𝑑𝐯(𝑡)
𝑑𝑡

Earlier, we found the horizontal velocity to be

𝑣y2 = 𝑣y1 + 𝑤2 𝐿2 sin (𝜃2)

Applying this to our equation for acceleration

𝑎y2 = 𝑑𝑣y1+𝑤2 𝐿2 sin(𝜃2)
𝑑𝑡

By the product and chain rules, we find

𝑎y2 = 𝑎y1 + 𝑤2
2 𝐿2 cos (𝜃2) + 𝛼2 𝐿2 sin (𝜃2)

19

Refname GD:xForce1
Label Horizontal force on the first object

Units N

Equation
𝐅 = 𝑚𝐚(𝑡) = −𝐓1 sin (𝜃1) + 𝐓2 sin (𝜃2)

Description
𝐅 is the force (N)
𝑚 is the mass (kg)
𝐚(𝑡) is the acceleration (m

s2)
𝐓1 is the tension of the first object (N)
𝜃1 is the angle of the first rod (rad)
𝐓2 is the tension of the second object (N)
𝜃2 is the angle of the second rod (rad)

Source –

RefBy IM:calOfAngle2

Detailed derivation of force on the first object:

𝐅 = 𝑚𝐚(𝑡) = −𝐓1 sin (𝜃1) + 𝐓2 sin (𝜃2)

20

Refname GD:yForce1
Label Vertical force on the first object

Units N

Equation
𝐅 = 𝑚𝐚(𝑡) = 𝐓1 cos (𝜃1) − 𝐓2 cos (𝜃2) − 𝑚1 𝐠

Description
𝐅 is the force (N)
𝑚 is the mass (kg)
𝐚(𝑡) is the acceleration (m

s2)
𝐓1 is the tension of the first object (N)
𝜃1 is the angle of the first rod (rad)
𝐓2 is the tension of the second object (N)
𝜃2 is the angle of the second rod (rad)
𝑚1 is the mass of the first object (kg)
𝐠 is the gravitational acceleration (m

s2)

Source –

RefBy IM:calOfAngle2

Detailed derivation of force on the first object:

𝐅 = 𝑚𝐚(𝑡) = 𝐓1 cos (𝜃1) − 𝐓2 cos (𝜃2) − 𝑚1 𝐠

21

Refname GD:xForce2
Label Horizontal force on the second object

Units N

Equation
𝐅 = 𝑚𝐚(𝑡) = −𝐓2 sin (𝜃2)

Description
𝐅 is the force (N)
𝑚 is the mass (kg)
𝐚(𝑡) is the acceleration (m

s2)
𝐓2 is the tension of the second object (N)
𝜃2 is the angle of the second rod (rad)

Source –

RefBy IM:calOfAngle2

Detailed derivation of force on the second object:

𝐅 = 𝑚𝐚(𝑡) = −𝐓2 sin (𝜃2)

22

Refname GD:yForce2
Label Vertical force on the second object

Units N

Equation
𝐅 = 𝑚𝐚(𝑡) = 𝐓2 cos (𝜃2) − 𝑚2 𝐠

Description
𝐅 is the force (N)
𝑚 is the mass (kg)
𝐚(𝑡) is the acceleration (m

s2)
𝐓2 is the tension of the second object (N)
𝜃2 is the angle of the second rod (rad)
𝑚2 is the mass of the second object (kg)
𝐠 is the gravitational acceleration (m

s2)

Source –

RefBy IM:calOfAngle2

Detailed derivation of force on the second object:

𝐅 = 𝑚𝐚(𝑡) = 𝐓2 cos (𝜃2) − 𝑚2 𝐠

4.2.4 Data Definitions

This section collects and defines all the data needed to build the instance models.

23

Refname DD:positionGDD
Label Velocity

Symbol 𝐯(𝑡)

Units m
s

Equation
𝐯(𝑡) = 𝑑𝐩(𝑡)

𝑑𝑡

Description
𝐯(𝑡) is the velocity (m

s)
𝑡 is the time (s)
𝐩(𝑡) is the position (m)

Source –

RefBy GD:velocityY2, GD:velocityY1, GD:velocityX2, and GD:velocityX1

24

Refname DD:positionXDD1
Label Horizontal position of the first object

Symbol 𝑝x1

Units m

Equation
𝑝x1 = 𝐿1 sin (𝜃1)

Description
𝑝x1 is the horizontal position of the first object (m)
𝐿1 is the length of the first rod (m)
𝜃1 is the angle of the first rod (rad)

Notes 𝑝x1 is the horizontal position
𝑝x1 is shown in Fig:dblpend.

Source –

RefBy GD:velocityX1

25

Refname DD:positionYDD1
Label Vertical position of the first object

Symbol 𝑝y1

Units m

Equation
𝑝y1 = −𝐿1 cos (𝜃1)

Description
𝑝y1 is the vertical position of the first object (m)
𝐿1 is the length of the first rod (m)
𝜃1 is the angle of the first rod (rad)

Notes 𝑝y1 is the vertical position
𝑝y1 is shown in Fig:dblpend.

Source –

RefBy GD:velocityY1

26

Refname DD:positionXDD2
Label Horizontal position of the second object

Symbol 𝑝x2

Units m

Equation
𝑝x2 = 𝑝x1 + 𝐿2 sin (𝜃2)

Description
𝑝x2 is the horizontal position of the second object (m)
𝑝x1 is the horizontal position of the first object (m)
𝐿2 is the length of the second rod (m)
𝜃2 is the angle of the second rod (rad)

Notes 𝑝x2 is the horizontal position
𝑝x2 is shown in Fig:dblpend.

Source –

RefBy GD:velocityX2

27

Refname DD:positionYDD2
Label Vertical position of the second object

Symbol 𝑝y2

Units m

Equation
𝑝y2 = 𝑝y1 − 𝐿2 cos (𝜃2)

Description
𝑝y2 is the vertical position of the second object (m)
𝑝y1 is the vertical position of the first object (m)
𝐿2 is the length of the second rod (m)
𝜃2 is the angle of the second rod (rad)

Notes 𝑝y2 is the vertical position
𝑝y2 is shown in Fig:dblpend.

Source –

RefBy GD:velocityY2

28

Refname DD:accelerationGDD
Label Acceleration

Symbol 𝐚(𝑡)

Units m
s2

Equation
𝐚(𝑡) = 𝑑𝐯(𝑡)

𝑑𝑡

Description
𝐚(𝑡) is the acceleration (m

s2)
𝑡 is the time (s)
𝐯(𝑡) is the velocity (m

s)

Source –

RefBy

29

Refname DD:forceGDD
Label Force

Symbol 𝐅

Units N

Equation
𝐅 = 𝑚𝐚(𝑡)

Description
𝐅 is the force (N)
𝑚 is the mass (kg)
𝐚(𝑡) is the acceleration (m

s2)

Source –

RefBy

4.2.5 Instance Models

This section transforms the problem defined in the problem description into one which is
expressed in mathematical terms. It uses concrete symbols defined in the data definitions
to replace the abstract symbols in the models identified in theoretical models and general
definitions.

30

Refname IM:calOfAngle1
Label Calculation of angle of first rod

Input 𝐿1, 𝐿2, 𝑚1, 𝑚2, 𝜃1, 𝜃2

Output 𝜃1

Input
Constraints 𝐿1 > 0

𝐿2 > 0

𝑚1 > 0

𝑚2 > 0

Output
Constraints

Equation

𝛼1 (𝜃1, 𝜃2, 𝑤1, 𝑤2) = −𝑔 (2 𝑚1+𝑚2) sin(𝜃1)−𝑚2 𝑔 sin(𝜃1−2 𝜃2)−2 sin(𝜃1−𝜃2) 𝑚2 (𝑤2
2 𝐿2+𝑤1

2 𝐿1 cos(𝜃1−𝜃2))
𝐿1 (2 𝑚1+𝑚2−𝑚2 cos(2 𝜃1−2 𝜃2))

Description
𝛼1 is the angular acceleration of the first object (rad

s2)
𝜃1 is the angle of the first rod (rad)
𝜃2 is the angle of the second rod (rad)
𝑤1 is the angular velocity of the first object (rad

s)
𝑤2 is the angular velocity of the second object (rad

s)
𝑔 is the magnitude of gravitational acceleration (m

s2)
𝑚1 is the mass of the first object (kg)
𝑚2 is the mass of the second object (kg)
𝐿2 is the length of the second rod (m)
𝐿1 is the length of the first rod (m)

Notes 𝜃1 is calculated by solving the ODE here together with the initial
conditions and IM:calOfAngle2.

Source –

RefBy FR:Output-Values, FR:Calculate-Angle-Of-Rod, and IM:calOfAngle2

31

Refname IM:calOfAngle2
Label Calculation of angle of second rod

Input 𝐿1, 𝐿2, 𝑚1, 𝑚2, 𝜃1, 𝜃2

Output 𝜃2

Input
Constraints 𝐿1 > 0

𝐿2 > 0

𝑚1 > 0

𝑚2 > 0

Output
Constraints

Equation

𝛼2 (𝜃1, 𝜃2, 𝑤1, 𝑤2) = 2 sin(𝜃1−𝜃2) (𝑤1
2 𝐿1 (𝑚1+𝑚2)+𝑔 (𝑚1+𝑚2) cos(𝜃1)+𝑤2

2 𝐿2 𝑚2 cos(𝜃1−𝜃2))
𝐿2 (2 𝑚1+𝑚2−𝑚2 cos(2 𝜃1−2 𝜃2))

Description
𝛼2 is the angular acceleration of the second object (rad

s2)
𝜃1 is the angle of the first rod (rad)
𝜃2 is the angle of the second rod (rad)
𝑤1 is the angular velocity of the first object (rad

s)
𝑤2 is the angular velocity of the second object (rad

s)
𝐿1 is the length of the first rod (m)
𝑚1 is the mass of the first object (kg)
𝑚2 is the mass of the second object (kg)
𝑔 is the magnitude of gravitational acceleration (m

s2)
𝐿2 is the length of the second rod (m)

Notes 𝜃2 is calculated by solving the ODE here together with the initial
conditions and IM:calOfAngle1.

Source –

RefBy FR:Output-Values, FR:Calculate-Angle-Of-Rod, IM:calOfAngle2, and
IM:calOfAngle1 32

Detailed derivation of angle of the second rod: By solving equations GD:xForce2 and
GD:yForce2 for 𝐓2 sin (𝜃2) and 𝐓2 cos (𝜃2) and then substituting into equation GD:xForce1
and GD:yForce1 , we can get equations 1 and 2:

𝑚1 𝑎x1 = −𝐓1 sin (𝜃1) − 𝑚2 𝑎x2

𝑚1 𝑎y1 = 𝐓1 cos (𝜃1) − 𝑚2 𝑎y2 − 𝑚2 𝑔 − 𝑚1 𝑔

Multiply the equation 1 by cos (𝜃1) and the equation 2 by sin (𝜃1) and rearrange to get:

𝐓1 sin (𝜃1) cos (𝜃1) = − cos (𝜃1) (𝑚1 𝑎x1 + 𝑚2 𝑎x2)

𝐓1 sin (𝜃1) cos (𝜃1) = sin (𝜃1) (𝑚1 𝑎y1 + 𝑚2 𝑎y2 + 𝑚2 𝑔 + 𝑚1 𝑔)

This leads to the equation 3

sin (𝜃1) (𝑚1 𝑎y1 + 𝑚2 𝑎y2 + 𝑚2 𝑔 + 𝑚1 𝑔) = − cos (𝜃1) (𝑚1 𝑎x1 + 𝑚2 𝑎x2)

Next, multiply equation GD:xForce2 by cos (𝜃2) and equation GD:yForce2 by sin (𝜃2) and
rearrange to get:

𝐓2 sin (𝜃2) cos (𝜃2) = − cos (𝜃2) 𝑚2 𝑎x2

𝐓1 sin (𝜃2) cos (𝜃2) = sin (𝜃2) (𝑚2 𝑎y2 + 𝑚2 𝑔)

which leads to equation 4

sin (𝜃2) (𝑚2 𝑎y2 + 𝑚2 𝑔) = − cos (𝜃2) 𝑚2 𝑎x2

By giving equations GD:accelerationX1 and GD:accelerationX2 and GD:accelerationY1 and
GD:accelerationY2 plus additional two equations, 3 and 4, we can get IM:calOfAngle1 and
IM:calOfAngle2 via a computer algebra program:

4.2.6 Data Constraints

The Data Constraints Table shows the data constraints on the input variables. The column
for physical constraints gives the physical limitations on the range of values that can be taken
by the variable. The uncertainty column provides an estimate of the confidence with which
the physical quantities can be measured. This information would be part of the input if one
were performing an uncertainty quantification exercise. The constraints are conservative to
give the user of the model the flexibility to experiment with unusual situations. The column
of typical values is intended to provide a feel for a common scenario.

33

Table 4: Input Data Constraints

𝐿1 𝐿1 > 0 1.0 m 10%
𝐿2 𝐿2 > 0 1.0 m 10%
𝑚1 𝑚1 > 0 0.5 kg 10%
𝑚2 𝑚2 > 0 0.5 kg 10%

Var Physical Constraints Typical Value Uncert.

4.2.7 Properties of a Correct Solution

The Data Constraints Table shows the data constraints on the output variables. The column
for physical constraints gives the physical limitations on the range of values that can be taken
by the variable.

Table 5: Output Data Constraints

𝜃1 𝜃1 > 0
𝜃2 𝜃2 > 0

Var Physical Constraints

5 Requirements
This section provides the functional requirements, the tasks and behaviours that the software
is expected to complete, and the non-functional requirements, the qualities that the software
is expected to exhibit.

5.1 Functional Requirements
This section provides the functional requirements, the tasks and behaviours that the software
is expected to complete.

Input-Values: Input the values from Tab:ReqInputs.

Verify-Input-Values: Check the entered input values to ensure that they do not exceed the
data constraints. If any of the input values are out of bounds, an error message is
displayed and the calculations stop.

Calculate-Angle-Of-Rod: Calculate the following values: 𝜃1 and 𝜃2 (from IM:calOfAngle1
and IM:calOfAngle2).

Output-Values: Output 𝜃1 and 𝜃2 (from IM:calOfAngle1 and IM:calOfAngle2).

34

Table 6: Required Inputs following FR:Input-Values

𝐿1 Length of the first rod m
𝐿2 Length of the second rod m
𝑚1 Mass of the first object kg
𝑚2 Mass of the second object kg

Symbol Description Units

5.2 Non-Functional Requirements
This section provides the non-functional requirements, the qualities that the software is
expected to exhibit.

Correctness: The outputs of the code have the properties of a correct solution.

Portability: The code shall be portable to multiple environments, particularly Windows,
Mac OSX, and Linux.

6 Traceability Matrices and Graphs
The purpose of the traceability matrices is to provide easy references on what has to be ad-
ditionally modified if a certain component is changed. Every time a component is changed,
the items in the column of that component that are marked with an “X” should be modi-
fied as well. Tab:TraceMatAvsA shows the dependencies of the assumptions on each other.
Tab:TraceMatAvsAll shows the dependencies of the data definitions, theoretical models, gen-
eral definitions, instance models, requirements, likely changes, and unlikely changes on the
assumptions. Tab:TraceMatRefvsRef shows the dependencies of the data definitions, theo-
retical models, general definitions, and instance models on each other. Tab:TraceMatAllvsR
shows the dependencies of the requirements and goal statements on the data definitions,
theoretical models, general definitions, and instance models.

Table 7: Traceability Matrix Showing the Connections Between Assumptions and Other Assumptions

A:twoDMotion
A:cartSys
A:cartSysR
A:yAxisDir
A:startOrigin

A:twoDMotion A:cartSys A:cartSysR A:yAxisDir A:startOrigin A:firstPend A:secondPend

Continued on next page

35

Table 7: Traceability Matrix Showing the Connections Between Assumptions and Other Assumptions (Continued)

A:firstPend
A:secondPend

A:twoDMotion A:cartSys A:cartSysR A:yAxisDir A:startOrigin A:firstPend A:secondPend

Table 8: Traceability Matrix Showing the Connections Between Assumptions and Other Items

DD:positionGDD
DD:positionXDD1
DD:positionYDD1
DD:positionXDD2
DD:positionYDD2
DD:accelerationGDD
DD:forceGDD
TM:acceleration
TM:velocity
TM:NewtonSecLawMot
GD:velocityX1
GD:velocityY1
GD:velocityX2
GD:velocityY2
GD:accelerationX1
GD:accelerationY1
GD:accelerationX2
GD:accelerationY2
GD:xForce1
GD:yForce1
GD:xForce2
GD:yForce2
IM:calOfAngle1
IM:calOfAngle2

A:twoDMotion A:cartSys A:cartSysR A:yAxisDir A:startOrigin A:firstPend A:secondPend

Continued on next page

36

Table 8: Traceability Matrix Showing the Connections Between Assumptions and Other Items (Continued)

FR:Input-Values
FR:Verify-Input-Values
FR:Calculate-Angle-Of-Rod
FR:Output-Values
NFR:Correctness
NFR:Portability

A:twoDMotion A:cartSys A:cartSysR A:yAxisDir A:startOrigin A:firstPend A:secondPend

Table 9: Traceability Matrix Showing the Connections Between Items and Other Sections

DD:positionGDD
DD:positionXDD1
DD:positionYDD1
DD:positionXDD2
DD:positionYDD2
DD:accelerationGDD
DD:forceGDD
TM:acceleration
TM:velocity
TM:NewtonSecLawMot
GD:velocityX1 X X
GD:velocityY1 X X
GD:velocityX2 X X
GD:velocityY2 X X
GD:accelerationX1
GD:accelerationY1
GD:accelerationX2
GD:accelerationY2
GD:xForce1
GD:yForce1

DD:positionGDD DD:positionXDD1 DD:positionYDD1 DD:positionXDD2 DD:positionYDD2 DD:accelerationGDD DD:forceGDD TM:acceleration TM:velocity TM:NewtonSecLawMot GD:velocityX1 GD:velocityY1 GD:velocityX2 GD:velocityY2 GD:accelerationX1 GD:accelerationY1 GD:accelerationX2 GD:accelerationY2 GD:xForce1 GD:yForce1 GD:xForce2 GD:yForce2 IM:calOfAngle1 IM:calOfAngle2

Continued on next page

37

Table 9: Traceability Matrix Showing the Connections Between Items and Other Sections (Continued)

GD:xForce2
GD:yForce2
IM:calOfAngle1 X
IM:calOfAngle2 X X X X X X X X X X

DD:positionGDD DD:positionXDD1 DD:positionYDD1 DD:positionXDD2 DD:positionYDD2 DD:accelerationGDD DD:forceGDD TM:acceleration TM:velocity TM:NewtonSecLawMot GD:velocityX1 GD:velocityY1 GD:velocityX2 GD:velocityY2 GD:accelerationX1 GD:accelerationY1 GD:accelerationX2 GD:accelerationY2 GD:xForce1 GD:yForce1 GD:xForce2 GD:yForce2 IM:calOfAngle1 IM:calOfAngle2

Table 10: Traceability Matrix Showing the Connections Between Requirements, Goal Statements and Other Items

GS:motionMass
FR:Input-Values
FR:Verify-Input-Values
FR:Calculate-Angle-Of-Rod X X
FR:Output-Values X X
NFR:Correctness
NFR:Portability

DD:positionGDD DD:positionXDD1 DD:positionYDD1 DD:positionXDD2 DD:positionYDD2 DD:accelerationGDD DD:forceGDD TM:acceleration TM:velocity TM:NewtonSecLawMot GD:velocityX1 GD:velocityY1 GD:velocityX2 GD:velocityY2 GD:accelerationX1 GD:accelerationY1 GD:accelerationX2 GD:accelerationY2 GD:xForce1 GD:yForce1 GD:xForce2 GD:yForce2 IM:calOfAngle1 IM:calOfAngle2 FR:Input-Values FR:Verify-Input-Values FR:Calculate-Angle-Of-Rod FR:Output-Values NFR:Correctness NFR:Portability

The purpose of the traceability graphs is also to provide easy references on what has
to be additionally modified if a certain component is changed. The arrows in the graphs
represent dependencies. The component at the tail of an arrow is depended on by the com-
ponent at the head of that arrow. Therefore, if a component is changed, the components
that it points to should also be changed. Fig:TraceGraphAvsA shows the dependencies of as-
sumptions on each other. Fig:TraceGraphAvsAll shows the dependencies of data definitions,
theoretical models, general definitions, instance models, requirements, likely changes, and
unlikely changes on the assumptions. Fig:TraceGraphRefvsRef shows the dependencies of
data definitions, theoretical models, general definitions, and instance models on each other.
Fig:TraceGraphAllvsR shows the dependencies of requirements and goal statements on the
data definitions, theoretical models, general definitions, and instance models. Fig:Trace-
GraphAllvsAll shows the dependencies of dependencies of assumptions, models, definitions,
requirements, goals, and changes with each other.

A:twoDMotion A:cartSys A:cartSysR A:yAxisDir A:startOrigin A:firstPend A:secondPend

Figure 3: TraceGraphAvsA

38

A:twoDMotion A:cartSys A:cartSysR A:yAxisDir A:startOrigin A:firstPend A:secondPend DD:positionGDD DD:positionXDD1 DD:positionYDD1 DD:positionXDD2 DD:positionYDD2 DD:accelerationGDD DD:forceGDD TM:acceleration TM:velocity TM:NewtonSecLawMot GD:accelerationY2 GD:xForce1 GD:yForce1 GD:xForce2 GD:yForce2 IM:calOfAngle1 IM:calOfAngle2 FR:inputValues FR:verifyInptVals FR:calcAng FR:outputValues NFR:correct NFR:portable

Figure 4: TraceGraphAvsAll

GD:accelerationY2

DD:positionGDD DD:positionXDD1 DD:positionYDD1 DD:positionXDD2 DD:positionYDD2

IM:calOfAngle1IM:calOfAngle2

GD:xForce1 GD:yForce1 GD:xForce2 GD:yForce2

DD:accelerationGDD DD:forceGDD

TM:acceleration TM:velocity TM:NewtonSecLawMot

Figure 5: TraceGraphRefvsRef

FR:calcAng

IM:calOfAngle1 IM:calOfAngle2

FR:outputValues A:twoDMotion A:cartSys A:cartSysR A:yAxisDir A:startOrigin A:firstPend A:secondPend DD:positionGDD DD:positionXDD1 DD:positionYDD1 DD:positionXDD2 DD:positionYDD2 DD:accelerationGDD DD:forceGDD TM:acceleration TM:velocity TM:NewtonSecLawMot GD:accelerationY2 GD:xForce1 GD:yForce1 GD:xForce2 GD:yForce2 FR:inputValues FR:verifyInptVals NFR:correct NFR:portable GS:motionMass

Figure 6: TraceGraphAllvsR

GD:accelerationY2

DD:positionGDD DD:positionXDD1 DD:positionYDD1 DD:positionXDD2 DD:positionYDD2

IM:calOfAngle1 IM:calOfAngle2

GD:xForce1 GD:yForce1 GD:xForce2 GD:yForce2

FR:calcAng FR:outputValues A:twoDMotion A:cartSys A:cartSysR A:yAxisDir A:startOrigin A:firstPend A:secondPend

DD:accelerationGDD DD:forceGDD

TM:acceleration TM:velocity TM:NewtonSecLawMot FR:inputValues FR:verifyInptVals NFR:correct NFR:portable GS:motionMass

Figure 7: TraceGraphAllvsAll

For convenience, the following graphs can be found at the links below:

• TraceGraphAvsA

• TraceGraphAvsAll

• TraceGraphRefvsRef

• TraceGraphAllvsR

• TraceGraphAllvsAll

7 Values of Auxiliary Constants
There are no auxiliary constants.

39

../../../../traceygraphs/dblpend/avsa.svg
../../../../traceygraphs/dblpend/avsall.svg
../../../../traceygraphs/dblpend/refvsref.svg
../../../../traceygraphs/dblpend/allvsr.svg
../../../../traceygraphs/dblpend/allvsall.svg

8 References
[1] Wikipedia Contributors. Acceleration. https://en.wikipedia.org/wiki/Acceleration.

June 2019.
[2] Wikipedia Contributors. Cartesian coordinate system. https://en.wikipedia.org/

wiki/Cartesian_coordinate_system. June 2019.
[3] Wikipedia Contributors. Velocity. https://en.wikipedia.org/wiki/Velocity. June

2019.
[4] R. C. Hibbeler. Engineering Mechanics: Dynamics. Pearson Prentice Hall, 2004.
[5] Nirmitha Koothoor. “A Document Driven Approach to Certifying Scientific Computing

Software”. MA thesis. Hamilton, ON, Canada: McMaster University, 2013.
[6] David L. Parnas and P. C. Clements. “A rational design process: How and why to fake

it”. In: IEEE Transactions on Software Engineering 12.2 (Feb. 1986), pp. 251–257.
[7] W. Spencer Smith and Nirmitha Koothoor. “A Document-Driven Method for Certi-

fying Scientific Computing Software for Use in Nuclear Safety Analysis”. In: Nuclear
Engineering and Technology 48.2 (Apr. 2016), pp. 404–418.

[8] W. Spencer Smith and Lei Lai. “A new requirements template for scientific comput-
ing”. In: Proceedings of the First International Workshop on Situational Requirements
Engineering Processes - Methods, Techniques and Tools to Support Situation-Specific
Requirements Engineering Processes, SREP’05. Ed. by PJ Agerfalk, N. Kraiem, and J.
Ralyte. In conjunction with 13th IEEE International Requirements Engineering Con-
ference, Paris, France, 2005, pp. 107–121.

[9] W. Spencer Smith, Lei Lai, and Ridha Khedri. “Requirements Analysis for Engineering
Computation: A Systematic Approach for Improving Software Reliability”. In: Reliable
Computing, Special Issue on Reliable Engineering Computation 13.1 (Feb. 2007), pp. 83–
107.

40

https://en.wikipedia.org/wiki/Acceleration
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Velocity

	Reference Material
	Table of Units
	Table of Symbols
	Abbreviations and Acronyms

	Introduction
	Purpose of Document
	Scope of Requirements
	Characteristics of Intended Reader
	Organization of Document

	General System Description
	System Context
	User Characteristics
	System Constraints

	Specific System Description
	Problem Description
	Terminology and Definitions
	Physical System Description
	Goal Statements

	Solution Characteristics Specification
	Assumptions
	Theoretical Models
	General Definitions
	Data Definitions
	Instance Models
	Data Constraints
	Properties of a Correct Solution

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Traceability Matrices and Graphs
	Values of Auxiliary Constants
	References

