
Software Requirements Specification for GamePhysics

Alex Halliwushka, Luthfi Mawarid, and Olu Owojaiye

November 11, 2024

Contents
1 Reference Material 3

1.1 Table of Units . 3
1.2 Table of Symbols . 3
1.3 Abbreviations and Acronyms . 6

2 Introduction 6
2.1 Purpose of Document . 7
2.2 Scope of Requirements . 7
2.3 Characteristics of Intended Reader . 7
2.4 Organization of Document . 7

3 General System Description 8
3.1 System Context . 8
3.2 User Characteristics . 8
3.3 System Constraints . 9

4 Specific System Description 9
4.1 Problem Description . 9

4.1.1 Terminology and Definitions . 9
4.1.2 Goal Statements . 10

4.2 Solution Characteristics Specification . 10
4.2.1 Assumptions . 10
4.2.2 Theoretical Models . 11
4.2.3 General Definitions . 14
4.2.4 Data Definitions . 17
4.2.5 Instance Models . 32
4.2.6 Data Constraints . 38
4.2.7 Properties of a Correct Solution . 38

1

5 Requirements 39
5.1 Functional Requirements . 39
5.2 Non-Functional Requirements . 40

6 Likely Changes 40

7 Unlikely Changes 41

8 Off-The-Shelf Solutions 41

9 Traceability Matrices and Graphs 41

10 Values of Auxiliary Constants 46

11 References 46

2

1 Reference Material
This section records information for easy reference.

1.1 Table of Units
The unit system used throughout is SI (Système International d’Unités). In addition to the
basic units, several derived units are also used. For each unit, the Table of Units lists the
symbol, a description, and the SI name.

Table 1: Table of Units

J energy joule
kg mass kilogram
m length metre
N force newton
rad angle radian
s time second

Symbol Description SI Name

1.2 Table of Symbols
The symbols used in this document are summarized in the Table of Symbols along with
their units. Throughout the document, symbols in bold will represent vectors, and scalars
otherwise. The symbols are listed in alphabetical order. For vector quantities, the units
shown are for each component of the vector.

Table 2: Table of Symbols

𝑎(𝑡) Linear acceleration m
s2

𝐚(𝑡) Acceleration m
s2

𝐚(𝑡)𝑗 J-Th Body’s Acceleration m
s2

𝐶R Coefficient of restitution –
𝑑𝑗 Distance Between the J-Th Particle and the Axis of Rotation m
𝐝 Distance between the center of mass of the rigid bodies m

̂𝐝 Unit vector directed from the center of the large mass to the center
of the smaller mass

m

Symbol Description Units

Continued on next page

3

Table 2: Table of Symbols (Continued)

‖𝐝‖ Euclidean norm of the distance between the center of mass of two
bodies

m

‖𝐝‖2 Squared distance m2

𝐅 Force N
𝐅1 Force exerted by the first body (on another body) N
𝐅2 Force exerted by the second body (on another body) N
𝐅𝐠 Force of gravity N
𝐅𝑗 Force Applied to the J-Th Body at Time T N
𝐺 Gravitational constant m3

kgs2

𝐠 Gravitational acceleration m
s2

ℎ Height m
𝐈 Moment of inertia kgm2

𝐈A Moment of Inertia of Rigid Body A kgm2

𝐈B Moment of Inertia of Rigid Body B kgm2

𝐉 Impulse (vector) Ns
𝑗 Impulse (scalar) Ns
𝐾𝐸 Kinetic energy J
𝐿 Length m
𝑀 Mass of the Larger Rigid Body kg
𝑚 Mass kg
𝑚1 Mass of the first body kg
𝑚2 Mass of the second body kg
𝑚A Mass of Rigid Body A kg
𝑚B Mass of Rigid Body B kg
𝑚𝑗 Mass of the J-Th Particle kg
𝑚𝑇 Total Mass of the Rigid Body kg
𝐧 Collision normal vector m
‖𝐧‖ Length of the normal vector m
𝑃𝐸 Potential energy J
𝐩(𝑡) Position m

Symbol Description Units

Continued on next page

4

Table 2: Table of Symbols (Continued)

𝐩(𝑡)CM Center of Mass m
𝐩(𝑡)𝑗 Position Vector of the J-Th Particle m

𝐫 Position vector m
𝑡 Time s
𝑡c Denotes the time at collision s
𝑢(𝑡) Linear displacement m
𝐮 Displacement m
‖𝐮AP*𝐧‖ Length of the Perpendicular Vector to the Contact Displacement

Vector of Rigid Body A
m

‖𝐮BP*𝐧‖ Length of the Perpendicular Vector to the Contact Displacement
Vector of Rigid Body B

m

𝐮OB Displacement vector between the origin and point B m
𝑣(𝑡) Linear velocity m

s

𝐯(𝑡) Velocity m
s

Δ𝐯 Change in velocity m
s

𝐯(𝑡)AP Velocity of the Point of Collision P in Body A m
s

𝐯(𝑡)BP Velocity of the Point of Collision P in Body B m
s

𝐯(𝑡)1 Velocity of the First Body m
s

𝐯(𝑡)2 Velocity of the Second Body m
s

𝐯(𝑡)A Velocity at Point A m
s

𝐯(𝑡)B Velocity at Point B m
s

𝐯(𝑡)f
AB Final Relative Velocity Between Rigid Bodies of A and B m

s

𝐯(𝑡)i
AB Initial Relative Velocity Between Rigid Bodies of A and B m

s

𝐯(𝑡)𝑗 Velocity of the J-Th Body m
s

𝐯(𝑡)O Velocity at Point Origin m
s

𝛼 Angular acceleration rad
s2

𝛼𝑗 J-Th Body’s Angular Acceleration rad
s2

𝜃 Angular displacement rad
𝝉 Torque Nm

Symbol Description Units

Continued on next page

5

Table 2: Table of Symbols (Continued)

𝝉𝑗 Torque applied to the j-th body Nm
𝜔 Angular velocity rad

s

𝜙 Orientation rad

Symbol Description Units

1.3 Abbreviations and Acronyms

Table 3: Abbreviations and Acronyms

2D Two-Dimensional
3D Three-Dimensional
A Assumption
CM Centre of Mass
DD Data Definition
GD General Definition
GS Goal Statement
IM Instance Model
LC Likely Change
ODE Ordinary Differential Equation
R Requirement
RefBy Referenced by
Refname Reference Name
SRS Software Requirements Specification
TM Theoretical Model
UC Unlikely Change
Uncert. Typical Uncertainty

Abbreviation Full Form

2 Introduction
Due to the rising cost of developing video games, developers are looking for ways to save
time and money for their projects. Using an open source physics library that is reliable and
free will cut down development costs and lead to better quality products. The document
describes the program based on the original, manually created version of GamePhysics.

6

https://github.com/smiths/caseStudies/blob/master/CaseStudies/gamephys

The following section provides an overview of the Software Requirements Specification
(SRS) for GamePhysics. This section explains the purpose of this document, the scope of
the requirements, the characteristics of the intended reader, and the organization of the
document.

2.1 Purpose of Document
The primary purpose of this document is to record the requirements of GamePhysics. Goals,
assumptions, theoretical models, definitions, and other model derivation information are
specified, allowing the reader to fully understand and verify the purpose and scientific basis
of GamePhysics. With the exception of system constraints, this SRS will remain abstract,
describing what problem is being solved, but not how to solve it.

This document will be used as a starting point for subsequent development phases, in-
cluding writing the design specification and the software verification and validation plan.
The design document will show how the requirements are to be realized, including decisions
on the numerical algorithms and programming environment. The verification and validation
plan will show the steps that will be used to increase confidence in the software documen-
tation and the implementation. Although the SRS fits in a series of documents that follow
the so-called waterfall model, the actual development process is not constrained in any way.
Even when the waterfall model is not followed, as Parnas and Clements point out [8], the
most logical way to present the documentation is still to “fake” a rational design process.

2.2 Scope of Requirements
The scope of the requirements includes the physical simulation of 2D rigid bodies acted on
by forces.

2.3 Characteristics of Intended Reader
Reviewers of this documentation should have an understanding of rigid body dynamics and
high school calculus. The users of GamePhysics can have a lower level of expertise, as
explained in Sec:User Characteristics.

2.4 Organization of Document
The organization of this document follows the template for an SRS for scientific computing
software proposed by [6], [11], [12], and [10]. The presentation follows the standard pattern
of presenting goals, theories, definitions, and assumptions. For readers that would like a
more bottom up approach, they can start reading the instance models and trace back to find
any additional information they require.

The goal statements are refined to the theoretical models and the theoretical models to
the instance models.

7

3 General System Description
This section provides general information about the system. It identifies the interfaces
between the system and its environment, describes the user characteristics, and lists the
system constraints.

3.1 System Context
Fig:sysCtxDiag shows the system context. A circle represents an entity external to the soft-
ware, the user in this case. A rectangle represents the software system itself (GamePhysics).
Arrows are used to show the data flow between the system and its environment.

Figure 1: System Context

The interaction between the product and the user is through an application programming
interface. The responsibilities of the user and the system are as follows:

• User Responsibilities

– Provide initial conditions of the physical state of the simulation, rigid bodies
present, and forces applied to them.

– Ensure application programming interface use complies with the user guide.
– Ensure required software assumptions are appropriate for any particular problem

the software addresses.

• GamePhysics Responsibilities

– Determine if the inputs and simulation state satisfy the required physical and
system constraints.

– Calculate the new state of all rigid bodies within the simulation at each simulation
step.

– Provide updated physical state of all rigid bodies at the end of a simulation step.

3.2 User Characteristics
The end user of GamePhysics should have an understanding of first year programming con-
cepts and an understanding of high school physics.

8

3.3 System Constraints
There are no system constraints.

4 Specific System Description
This section first presents the problem description, which gives a high-level view of the
problem to be solved. This is followed by the solution characteristics specification, which
presents the assumptions, theories, and definitions that are used.

4.1 Problem Description
A system is needed to simulate 2D rigid body physics for use in game development in a simple,
lightweight, fast, and portable manner, which will allow for the production of higher quality
products. Creating a gaming physics library is a difficult task. Games need physics libraries
that simulate objects acting under various physical conditions, while simultaneously being
fast and efficient enough to work in soft real-time during the game. Developing a physics
library from scratch takes a long period of time and is very costly, presenting barriers of entry
which make it difficult for game developers to include physics in their products. There are
a few free, open source and high quality physics libraries available to be used for consumer
products.

4.1.1 Terminology and Definitions

This subsection provides a list of terms that are used in the subsequent sections and their
meaning, with the purpose of reducing ambiguity and making it easier to correctly under-
stand the requirements.

• Rigid body: A solid body in which deformation is neglected.

• Elasticity: The ratio of the relative velocities of two colliding objects after and before
a collision.

• Centre of mass: The mean location of the distribution of mass of the object.

• Cartesian coordinate system: A coordinate system that specifies each point uniquely
in a plane by a set of numerical coordinates, which are the signed distances to the
point from two fixed perpendicular oriented lines, measured in the same unit of length
(from [2]).

• Right-handed coordinate system: A coordinate system where the positive z-axis comes
out of the screen..

• line: An interval between two points (from [5]).

9

• point: An exact location, it has no size, only position (from [9]).

• damping: An influence within or upon an oscillatory system that has the effect of
reducing, restricting or preventing its oscillations (from [4]).

4.1.2 Goal Statements

Given the kinematic properties, and forces (including any collision forces) applied on a set
of rigid bodies, the goal statements are:

Determine-Linear-Properties: Determine their new positions and velocities over a period of
time.

Determine-Angular-Properties: Determine their new orientations and angular velocities over
a period of time.

4.2 Solution Characteristics Specification
The instance models that govern GamePhysics are presented in the Instance Model Section.
The information to understand the meaning of the instance models and their derivation is
also presented, so that the instance models can be verified.

4.2.1 Assumptions

This section simplifies the original problem and helps in developing the theoretical models
by filling in the missing information for the physical system. The assumptions refine the
scope by providing more detail.

objectTy: All objects are rigid bodies. (RefBy: GD:impulse, IM:rotMot, IM:transMot,
DD:chaslesThm, DD:reVeInColl, DD:potEnergy, DD:ctrOfMass, DD:momentOfIner-
tia, DD:linVel, DD:linDisp, DD:linAcc, DD:kEnergy, DD:impulseV, IM:col2D, DD:angVel,
DD:angDisp, and DD:angAccel.)

objectDimension: All objects are 2D. (RefBy: GD:impulse, IM:rotMot, IM:transMot, DD:potEn-
ergy, TM:NewtonSecLawRotMot, DD:kEnergy, IM:col2D, DD:angVel, DD:angDisp,
and DD:angAccel.)

coordinateSystemTy: The library uses a Cartesian coordinate system.

axesDefined: The axes are defined using right-handed coordinate system. (RefBy: GD:im-
pulse, IM:rotMot, and IM:col2D.)

collisionType: All rigid bodies collisions are vertex-to-edge collisions. (RefBy: GD:impulse,
LC:Expanded-Collisions, and IM:col2D.)

10

dampingInvolvement: There is no damping involved throughout the simulation and this im-
plies that there are no friction forces. (RefBy: IM:transMot, DD:potEnergy, LC:Include-
Dampening, DD:kEnergy, and IM:col2D.)

constraintsAndJointsInvolvement: There are no constraints and joints involved throughout
the simulation. (RefBy: IM:transMot, LC:Include-Joints-Constraints, and IM:col2D.)

4.2.2 Theoretical Models

This section focuses on the general equations and laws that GamePhysics is based on.

Refname TM:NewtonSecLawMot
Label Newton’s second law of motion

Equation
𝐅 = 𝑚 𝐚(𝑡)

Description
𝐅 is the force (N)
𝑚 is the mass (kg)
𝐚(𝑡) is the acceleration (m

s2)

Notes The net force 𝐅 on a body is proportional to the acceleration 𝐚(𝑡) of the
body, where 𝑚 denotes the mass of the body as the constant of
proportionality.

Source –

RefBy IM:transMot

11

Refname TM:NewtonThirdLawMot
Label Newton’s third law of motion

Equation
𝐅1 = −𝐅2

Description
𝐅1 is the force exerted by the first body (on another body) (N)
𝐅2 is the force exerted by the second body (on another body) (N)

Notes Every action has an equal and opposite reaction. In other words, the force
𝐅1 exerted on the second rigid body by the first is equal in magnitude and
in the opposite direction to the force 𝐅2 exerted on the first rigid body by
the second.

Source –

RefBy

12

Refname TM:UniversalGravLaw
Label Newton’s law of universal gravitation

Equation
𝐅 = 𝐺 𝑚1 𝑚2

‖𝐝‖2
̂𝐝 = 𝐺 𝑚1 𝑚2

‖𝐝‖2
𝐝

‖𝐝‖

Description
𝐅 is the force (N)
𝐺 is the gravitational constant (m3

kgs2)
𝑚1 is the mass of the first body (kg)
𝑚2 is the mass of the second body (kg)
‖𝐝‖ is the Euclidean norm of the distance between the center of mass of

two bodies (m)
̂𝐝 is the unit vector directed from the center of the large mass to the

center of the smaller mass (m)
𝐝 is the distance between the center of mass of the rigid bodies (m)

Notes Two rigid bodies in the universe attract each other with a force 𝐅 that is
directly proportional to the product of their masses, 𝑚1 and 𝑚2, and
inversely proportional to the squared distance ‖𝐝‖2 between them.

Source –

RefBy GD:accelGravity

13

Refname TM:NewtonSecLawRotMot
Label Newton’s second law for rotational motion

Equation
𝝉 = 𝐈 𝛼

Description
𝝉 is the torque (Nm)
𝐈 is the moment of inertia (kgm2)
𝛼 is the angular acceleration (rad

s2)

Notes The net torque 𝝉 on a rigid body is proportional to its angular acceleration
𝛼, where 𝐈 denotes the moment of inertia of the rigid body as the constant
of proportionality.
We also assume that all rigid bodies involved are two-dimensional (from
A:objectDimension).

Source –

RefBy IM:rotMot

4.2.3 General Definitions

This section collects the laws and equations that will be used to build the instance models.

14

Refname GD:accelGravity
Label Acceleration due to gravity

Units m
s2

Equation
𝐠 = −𝐺 𝑀

‖𝐝‖2
̂𝐝

Description
𝐠 is the gravitational acceleration (m

s2)
𝐺 is the gravitational constant (m3

kgs2)
𝑀 is the mass of the larger rigid body (kg)
‖𝐝‖ is the Euclidean norm of the distance between the center of mass of

two bodies (m)
̂𝐝 is the unit vector directed from the center of the large mass to the

center of the smaller mass (m)

Notes If one of the masses is much larger than the other, it is convenient to
define a gravitational field around the larger mass as shown above. The
negative sign in the equation indicates that the force is an attractive force.

Source Definition of Gravitational Acceleration

RefBy IM:transMot

Detailed derivation of gravitational acceleration: From Newton’s law of universal
gravitation, we have:

𝐅 = 𝐺 𝑚1 𝑚2
‖𝐝‖2

̂𝐝

The above equation governs the gravitational attraction between two bodies. Suppose that
one of the bodies is significantly more massive than the other, so that we concern ourselves
with the force the massive body exerts on the lighter body. Further, suppose that the
Cartesian coordinate system is chosen such that this force acts on a line which lies along one
of the principal axes. Then our unit vector directed from the center of the large mass to the
center of the smaller mass ̂𝐝 for the x or y axes is:

̂𝐝 = 𝐝
‖𝐝‖

15

https://en.wikipedia.org/wiki/Gravitational_acceleration

Given the above assumptions, let 𝑀 and 𝑚 be the mass of the massive and light body
respectively. Equating 𝐅 above with Newton’s second law for the force experienced by the
light body, we get:

𝐅𝐠 = 𝐺 𝑀 𝑚
‖𝐝‖2

̂𝐝 = 𝑚 𝐠

where 𝐠 is the gravitational acceleration. Dividing the above equation by 𝑚, we have:

𝐺 𝑀
‖𝐝‖2

̂𝐝 = 𝐠

and thus the negative sign indicates that the force is an attractive force:

𝐠 = −𝐺 𝑀
‖𝐝‖2

̂𝐝

16

Refname GD:impulse
Label Impulse for Collision

Units Ns

Equation
𝑗 = −(1+𝐶R) 𝐯(𝑡)i

AB⋅𝐧

(1
𝑚A

+ 1
𝑚B

) ‖𝐧‖2+ ‖𝐮AP*𝐧‖2
𝐈A

+ ‖𝐮BP*𝐧‖2
𝐈B

Description
𝑗 is the impulse (scalar) (Ns)
𝐶R is the coefficient of restitution (Unitless)
𝐯(𝑡)i

AB is the initial relative velocity between rigid bodies of A and B (m
s)

𝐧 is the collision normal vector (m)
𝑚A is the mass of rigid body A (kg)
𝑚B is the mass of rigid body B (kg)
‖𝐧‖ is the length of the normal vector (m)
‖𝐮AP*𝐧‖ is the length of the perpendicular vector to the contact

displacement vector of rigid body A (m)
𝐈A is the moment of inertia of rigid body A (kgm2)
‖𝐮BP*𝐧‖ is the length of the perpendicular vector to the contact

displacement vector of rigid body B (m)
𝐈B is the moment of inertia of rigid body B (kgm2)

Notes All bodies are assumed to be rigid (from A:objectTy) and two-dimensional
(from A:objectDimension).
A right-handed coordinate system is used (from A:axesDefined).
All collisions are vertex-to-edge (from A:collisionType).

Source Impulse for Collision Ref

RefBy IM:col2D

4.2.4 Data Definitions

This section collects and defines all the data needed to build the instance models.

17

http://www.chrishecker.com/images/e/e7/Gdmphys3.pdf

Refname DD:ctrOfMass
Label Center of Mass

Symbol 𝐩(𝑡)CM

Units m

Equation

𝐩(𝑡)CM =
∑ 𝑚𝑗 𝐩(𝑡)𝑗

𝑚𝑇

Description
𝐩(𝑡)CM is the Center of Mass (m)
𝑚𝑗 is the mass of the j-th particle (kg)
𝐩(𝑡)𝑗 is the position vector of the j-th particle (m)
𝑚𝑇 is the total mass of the rigid body (kg)

Notes All bodies are assumed to be rigid (from A:objectTy).

Source –

RefBy IM:transMot and IM:col2D

18

Refname DD:linDisp
Label Linear displacement

Symbol 𝑢(𝑡)

Units m

Equation
𝑢(𝑡) = 𝑑𝐩(𝑡)(𝑡)

𝑑𝑡

Description
𝑢(𝑡) is the linear displacement (m)
𝑡 is the time (s)
𝐩(𝑡) is the position (m)

Notes All bodies are assumed to be rigid (from A:objectTy).

Source –

RefBy IM:transMot

19

Refname DD:linVel
Label Linear velocity

Symbol 𝑣(𝑡)

Units m
s

Equation
𝑣(𝑡) = 𝑑𝐮(𝑡)

𝑑𝑡

Description
𝑣(𝑡) is the linear velocity (m

s)
𝑡 is the time (s)
𝐮 is the displacement (m)

Notes All bodies are assumed to be rigid (from A:objectTy).

Source –

RefBy IM:transMot

20

Refname DD:linAcc
Label Linear acceleration

Symbol 𝑎(𝑡)

Units m
s2

Equation
𝑎(𝑡) = 𝑑𝐯(𝑡)(𝑡)

𝑑𝑡

Description
𝑎(𝑡) is the linear acceleration (m

s2)
𝑡 is the time (s)
𝐯(𝑡) is the velocity (m

s)

Notes All bodies are assumed to be rigid (from A:objectTy).

Source –

RefBy IM:transMot

21

Refname DD:angDisp
Label Angular displacement

Symbol 𝜃

Units rad

Equation
𝜃 = 𝑑𝜙(𝑡)

𝑑𝑡

Description
𝜃 is the angular displacement (rad)
𝑡 is the time (s)
𝜙 is the orientation (rad)

Notes All bodies are assumed to be rigid (from A:objectTy) and two-dimensional
(from A:objectDimension).

Source –

RefBy IM:rotMot

22

Refname DD:angVel
Label Angular velocity

Symbol 𝜔

Units rad
s

Equation
𝜔 = 𝑑𝜃(𝑡)

𝑑𝑡

Description
𝜔 is the angular velocity (rad

s)
𝑡 is the time (s)
𝜃 is the angular displacement (rad)

Notes All bodies are assumed to be rigid (from A:objectTy) and two-dimensional
(from A:objectDimension).

Source –

RefBy IM:rotMot

23

Refname DD:angAccel
Label Angular acceleration

Symbol 𝛼

Units rad
s2

Equation
𝛼 = 𝑑𝜔(𝑡)

𝑑𝑡

Description
𝛼 is the angular acceleration (rad

s2)
𝑡 is the time (s)
𝜔 is the angular velocity (rad

s)

Notes All bodies are assumed to be rigid (from A:objectTy) and two-dimensional
(from A:objectDimension).

Source –

RefBy IM:rotMot

24

Refname DD:chaslesThm
Label Chasles’ theorem

Symbol 𝐯(𝑡)B

Units m
s

Equation
𝐯(𝑡)B = 𝐯(𝑡)O + 𝜔 × 𝐮OB

Description
𝐯(𝑡)B is the velocity at point B (m

s)
𝐯(𝑡)O is the velocity at point origin (m

s)
𝜔 is the angular velocity (rad

s)
𝐮OB is the displacement vector between the origin and point B (m)

Notes The linear velocity 𝐯(𝑡)B of any point B in a rigid body is the sum of the
linear velocity 𝐯(𝑡)O of the rigid body at the origin (axis of rotation) and
the resultant vector from the cross product of the rigid body’s angular
velocity 𝜔 and the displacement vector between the origin and point B
𝐮OB.
All bodies are assumed to be rigid (from A:objectTy).

Source [3]

RefBy

25

Refname DD:torque
Label Torque

Symbol 𝝉

Units Nm

Equation
𝝉 = 𝐫 × 𝐅

Description
𝝉 is the torque (Nm)
𝐫 is the position vector (m)
𝐅 is the force (N)

Notes The torque on a body measures the tendency of a force to rotate the body
around an axis or pivot.

Source –

RefBy

26

Refname DD:kEnergy
Label Kinetic energy

Symbol 𝐾𝐸

Units J

Equation
𝐾𝐸 = 𝑚 ‖𝐯(𝑡)‖2

2

Description
𝐾𝐸 is the kinetic energy (J)
𝑚 is the mass (kg)
𝐯(𝑡) is the velocity (m

s)

Notes Kinetic energy is the measure of the energy a body possesses due to its
motion.
All bodies are assumed to be rigid (from A:objectTy) and two-dimensional
(from A:objectDimension).
No damping occurs during the simulation (from A:dampingInvolvement).

Source –

RefBy

27

Refname DD:coeffRestitution
Label Coefficient of restitution

Symbol 𝐶R

Units Unitless

Equation
𝐶R = − (𝐯(𝑡)f

AB⋅𝐧
𝐯(𝑡)i

AB⋅𝐧
)

Description
𝐶R is the coefficient of restitution (Unitless)
𝐯(𝑡)f

AB is the final relative velocity between rigid bodies of A and B (m
s)

𝐧 is the collision normal vector (m)
𝐯(𝑡)i

AB is the initial relative velocity between rigid bodies of A and B (m
s)

Notes The coefficient of restitution 𝐶R determines the elasticity of a collision
between two rigid bodies. 𝐶R = 1 results in an elastic collision, 𝐶R < 1
results in an inelastic collision, and 𝐶R = 0 results in a totally inelastic
collision.

Source –

RefBy

28

Refname DD:reVeInColl
Label Initial Relative Velocity Between Rigid Bodies of A and B

Symbol 𝐯(𝑡)i
AB

Units m
s

Equation
𝐯(𝑡)i

AB = 𝐯(𝑡)AP − 𝐯(𝑡)BP

Description
𝐯(𝑡)i

AB is the initial relative velocity between rigid bodies of A and B (m
s)

𝐯(𝑡)AP is the velocity of the point of collision P in body A (m
s)

𝐯(𝑡)BP is the velocity of the point of collision P in body B (m
s)

Notes In a collision, the velocity of a rigid body A colliding with another rigid
body B relative to that body 𝐯(𝑡)i

AB is the difference between the
velocities of A and B at point P.
All bodies are assumed to be rigid (from A:objectTy).

Source –

RefBy

29

Refname DD:impulseV
Label Impulse (vector)

Symbol 𝐉

Units Ns

Equation
𝐉 = 𝑚 Δ𝐯

Description
𝐉 is the impulse (vector) (Ns)
𝑚 is the mass (kg)
Δ𝐯 is the change in velocity (m

s)

Notes An impulse (vector) 𝐉 occurs when a force 𝐅 acts over a body over an
interval of time.
All bodies are assumed to be rigid (from A:objectTy).

Source –

RefBy

Detailed derivation of impulse (vector): Newton’s second law of motion states:

𝐅 = 𝑚 𝐚(𝑡) = 𝑚 𝑑𝐯(𝑡)
𝑑𝑡

Rearranging:

∫𝑡2

𝑡1
𝐅 𝑑𝑡 = 𝑚 (∫𝐯(𝑡)2

𝐯(𝑡)1
1 𝑑𝐯(𝑡))

Integrating the right hand side:

∫𝑡2

𝑡1
𝐅 𝑑𝑡 = 𝑚 𝐯(𝑡)2 − 𝑚 𝐯(𝑡)1 = 𝑚 Δ𝐯

30

Refname DD:potEnergy
Label Potential energy

Symbol 𝑃𝐸

Units J

Equation
𝑃𝐸 = 𝑚 𝐠 ℎ

Description
𝑃𝐸 is the potential energy (J)
𝑚 is the mass (kg)
𝐠 is the gravitational acceleration (m

s2)
ℎ is the height (m)

Notes The potential energy of an object is the energy held by an object because
of its position to other objects.
All bodies are assumed to be rigid (from A:objectTy) and two-dimensional
(from A:objectDimension).
No damping occurs during the simulation (from A:dampingInvolvement).

Source –

RefBy

31

Refname DD:momentOfInertia
Label Moment of inertia

Symbol 𝐈

Units kgm2

Equation
𝐈 = ∑ 𝑚𝑗 𝑑𝑗

2

Description
𝐈 is the moment of inertia (kgm2)
𝑚𝑗 is the mass of the j-th particle (kg)
𝑑𝑗 is the distance between the j-th particle and the axis of rotation (m)

Notes The moment of inertia 𝐈 of a body measures how much torque is needed
for the body to achieve angular acceleration about the axis of rotation.
All bodies are assumed to be rigid (from A:objectTy).

Source –

RefBy

4.2.5 Instance Models

This section transforms the problem defined in the problem description into one which is
expressed in mathematical terms. It uses concrete symbols defined in the data definitions
to replace the abstract symbols in the models identified in theoretical models and general
definitions.

The goal GS:Determine-Linear-Properties is met by IM:transMot and IM:col2D. The
goal GS:Determine-Angular-Properties is met by IM:rotMot and IM:col2D.

32

Refname IM:transMot
Label J-Th Body’s Acceleration

Input 𝐯(𝑡)𝑗, 𝑡, 𝐠, 𝐅𝑗, 𝑚𝑗

Output 𝐚(𝑡)𝑗

Input
Constraints 𝐯(𝑡)𝑗 > 0

𝑡 > 0

𝐠 > 0

𝐅𝑗 > 0

𝑚𝑗 > 0

Output
Constraints

Equation
𝐚(𝑡)𝑗 = 𝐠 + 𝐅𝑗(𝑡)

𝑚𝑗

Description
𝐚(𝑡)𝑗 is the j-th body’s acceleration (m

s2)
𝐠 is the gravitational acceleration (m

s2)
𝐅𝑗 is the force applied to the j-th body at time t (N)
𝑡 is the time (s)
𝑚𝑗 is the mass of the j-th particle (kg)

Notes The above equation expresses the total acceleration of the rigid body 𝑗 as
the sum of gravitational acceleration (from GD:accelGravity) and
acceleration due to applied force 𝐅𝑗 (𝑡) (from TM:NewtonSecLawMot).
The resultant outputs are then obtained from this equation using
DD:linDisp, DD:linVel, and DD:linAcc.
The output of the instance model will be the functions of position and
velocity over time that satisfy the ODE for the acceleration, with the given
initial conditions for position and velocity. The motion is translational, so
the position and velocity functions are for the centre of mass (from
DD:ctrOfMass).
All bodies are assumed to be rigid (from A:objectTy) and two-dimensional
(from A:objectDimension).
It is currently assumed that no damping occurs during the simulation
(from A:dampingInvolvement) and that no constraints are involved (from
A:constraintsAndJointsInvolvement).

Source –

RefBy

33

Detailed derivation of j-th body’s acceleration: We may calculate the total acceler-
ation of rigid body 𝑗 by calculating the derivative of it’s velocity with respect to time (from
DD:linAcc).

𝛼𝑗 =
𝑑𝐯(𝑡)𝑗(𝑡)

𝑑𝑡

Performing the derivative, we obtain:

𝐚(𝑡)𝑗 = 𝐠 + 𝐅𝑗(𝑡)
𝑚𝑗

34

Refname IM:rotMot
Label J-Th Body’s Angular Acceleration

Input 𝜔, 𝑡, 𝝉𝑗, 𝐈

Output 𝛼𝑗

Input
Constraints 𝜔 > 0

𝑡 > 0

𝝉𝑗 > 0

𝐈 > 0

Output
Constraints 𝛼𝑗 > 0

Equation
𝛼𝑗 = 𝝉𝑗(𝑡)

𝐈

Description
𝛼𝑗 is the j-th body’s angular acceleration (rad

s2)
𝝉𝑗 is the torque applied to the j-th body (Nm)
𝑡 is the time (s)
𝐈 is the moment of inertia (kgm2)

Notes The above equation for the total angular acceleration of the rigid body 𝑗 is
derived from TM:NewtonSecLawRotMot, and the resultant outputs are
then obtained from this equation using DD:angDisp, DD:angVel, and
DD:angAccel.
All bodies are assumed to be rigid (from A:objectTy) and two-dimensional
(from A:objectDimension).
A right-handed coordinate system is used (from A:axesDefined).

Source –

RefBy

35

Detailed derivation of j-th body’s angular acceleration: We may calculate the total
angular acceleration of rigid body 𝑗 by calculating the derivative of its angular velocity with
respect to time (from DD:angAccel).

𝛼𝑗 = 𝑑𝜔(𝑡)
𝑑𝑡

Performing the derivative, we obtain:

𝛼𝑗 = 𝝉𝑗(𝑡)
𝐈

36

Refname IM:col2D
Label Collisions on 2D rigid bodies

Input 𝑡, 𝑗, 𝑚A, 𝐧

Output 𝑡c

Input
Constraints 𝑡 > 0

𝑗 > 0

𝑚A > 0

𝐧 > 0

Output
Constraints 𝑡c > 0

Equation
𝐯(𝑡)A (𝑡c) = 𝐯(𝑡)A (𝑡) + 𝑗

𝑚A
𝐧

Description
𝐯(𝑡)A is the velocity at point A (m

s)
𝑡c is the denotes the time at collision (s)
𝑡 is the time (s)
𝑗 is the impulse (scalar) (Ns)
𝑚A is the mass of rigid body A (kg)
𝐧 is the collision normal vector (m)

Notes The output of the instance model will be the functions of position,
velocity, orientation, and angular acceleration over time that satisfy the
equations for the velocity and angular acceleration, with the given initial
conditions for position, velocity, orientation, and angular acceleration. The
motion is translational, so the position, velocity, orientation, and angular
acceleration functions are for the centre of mass (from DD:ctrOfMass).
All bodies are assumed to be rigid (from A:objectTy) and two-dimensional
(from A:objectDimension).
A right-handed coordinate system is used (from A:axesDefined).
All collisions are vertex-to-edge (from A:collisionType).
It is currently assumed that no damping occurs during the simulation
(from A:dampingInvolvement) and that no constraints are involved (from
A:constraintsAndJointsInvolvement).
𝑗 is defined in GD:impulse

Source –

RefBy

37

4.2.6 Data Constraints

The Data Constraints Table shows the data constraints on the input variables. The column
for physical constraints gives the physical limitations on the range of values that can be taken
by the variable. The uncertainty column provides an estimate of the confidence with which
the physical quantities can be measured. This information would be part of the input if one
were performing an uncertainty quantification exercise. The constraints are conservative to
give the user of the model the flexibility to experiment with unusual situations. The column
of typical values is intended to provide a feel for a common scenario.

Table 4: Input Data Constraints

𝐶R 0 ≤ 𝐶R ≤ 1 – 0.8 10%
𝐅 – – 98.1 N 10%
𝐺 – – 66.743 ⋅ 10−12 m3

kgs2 10%
𝐈 𝐈 > 0 – 74.5 kgm2 10%
𝐿 𝐿 > 0 – 44.2 m 10%
𝑚 𝑚 > 0 – 56.2 kg 10%
𝐩(𝑡) – – 0.412 m 10%
𝐯(𝑡) – – 2.51 m

s 10%
𝝉 – – 200 Nm 10%
𝜔 – – 2.1 rad

s 10%
𝜙 – 0 ≤ 𝜙 ≤ 2 𝜋 𝜋

2 rad 10%

Var Physical Constraints Software Constraints Typical Value Uncert.

4.2.7 Properties of a Correct Solution

The Data Constraints Table shows the data constraints on the output variables. The column
for physical constraints gives the physical limitations on the range of values that can be taken
by the variable.

38

Table 5:
Out-
put
Data
Con-
straints

𝐩(𝑡)
𝐯(𝑡)
𝜙
𝜔

Var

5 Requirements
This section provides the functional requirements, the tasks and behaviours that the software
is expected to complete, and the non-functional requirements, the qualities that the software
is expected to exhibit.

5.1 Functional Requirements
This section provides the functional requirements, the tasks and behaviours that the software
is expected to complete.

Simulation-Space: Create a space for all of the rigid bodies in the physical simulation to
interact in.

Input-Initial-Conditions: Input the initial masses, velocities, orientations, angular velocities
of, and forces applied on rigid bodies.

Input-Surface-Properties: Input the surface properties of the bodies such as friction or elas-
ticity.

Verify-Physical_Constraints: Verify that the inputs satisfy the required physical constraints
from the solution characteristics specification.

Calculate-Translation-Over-Time: Determine the positions and velocities over a period of
time of the 2D rigid bodies acted upon by a force.

Calculate-Rotation-Over-Time: Determine the orientations and angular velocities over a pe-
riod of time of the 2D rigid bodies.

Determine-Collisions: Determine if any of the rigid bodies in the space have collided.

39

Determine-Collision-Response-Over-Time: Determine the positions and velocities over a pe-
riod of time of the 2D rigid bodies that have undergone a collision.

5.2 Non-Functional Requirements
This section provides the non-functional requirements, the qualities that the software is
expected to exhibit.

Performance: The execution time for collision detection and collision resolution shall be
comparable to an existing 2D physics library on the market (e.g. Pymunk).

Correctness: The output of simulation results shall be compared to an existing implemen-
tation like Pymunk.

Usability: Software shall be easy to learn and use. Usability shall be measured by how long
it takes a user to learn how to use the library to create a small program to simulate
the movement of 2 bodies over time in space. Creating a program should take no less
than 30 to 60 minutes for an intermediate to experienced programmer.

Understandability: Users of Tamias2D shall be able to learn the software with ease. Users
shall be able to easily create a small program using the library. Creating a small
program to simulate the movement of 2 bodies in space should take no less that 60
minutes.

Maintainability: If a likely change is made to the finished software, it will take at most
10% of the original development time, assuming the same development resources are
available.

6 Likely Changes
This section lists the likely changes to be made to the software.

Variable-ODE-Solver: The internal ODE-solving algorithm used by the library may be changed
in the future.

Expanded-Collisions: A:collisionType - The library may be expanded to deal with edge-to-
edge and vertex-to-vertex collisions.

Include-Dampening: A:dampingInvolvement - The library may be expanded to include mo-
tion with damping.

Include-Joints-Constraints: A:constraintsAndJointsInvolvement - The library may be ex-
panded to include joints and constraints.

40

http://www.pymunk.org/en/latest/

7 Unlikely Changes
This section lists the unlikely changes to be made to the software.

Simulate-Rigid-Bodies: The goal of the system is to simulate the interactions of rigid bodies.

External-Input: There will always be a source of input data external to the software.

Cartesian-Coordinate-System: A Cartesian Coordinate system is used.

Objects-Rigid-Bodies: All objects are rigid bodies.

8 Off-The-Shelf Solutions
As mentioned in the problem description, there already exist free open source game physics
libraries. Similar 2D physics libraries are:

• Box2D

• Nape Physics Engine

Free open source 3D game physics libraries include:

• Bullet

• Open Dynamics Engine

• Newton Game Dynamics

9 Traceability Matrices and Graphs
The purpose of the traceability matrices is to provide easy references on what has to be ad-
ditionally modified if a certain component is changed. Every time a component is changed,
the items in the column of that component that are marked with an “X” should be modi-
fied as well. Tab:TraceMatAvsA shows the dependencies of the assumptions on each other.
Tab:TraceMatAvsAll shows the dependencies of the data definitions, theoretical models, gen-
eral definitions, instance models, requirements, likely changes, and unlikely changes on the
assumptions. Tab:TraceMatRefvsRef shows the dependencies of the data definitions, theo-
retical models, general definitions, and instance models on each other. Tab:TraceMatAllvsR
shows the dependencies of the requirements and goal statements on the data definitions,
theoretical models, general definitions, and instance models.

41

http://box2d.org/
http://napephys.com/
http://bulletphysics.org/
http://www.ode.org/
http://newtondynamics.com/

Table 6: Traceability Matrix Showing the Connections Between Assumptions and Other Assumptions

A:objectTy
A:objectDimension
A:coordinateSystemTy
A:axesDefined
A:collisionType
A:dampingInvolvement
A:constraintsAndJointsInvolvement

A:objectTy A:objectDimension A:coordinateSystemTy A:axesDefined A:collisionType A:dampingInvolvement A:constraintsAndJointsInvolvement

Table 7: Traceability Matrix Showing the Connections Between Assumptions and Other Items

DD:ctrOfMass X
DD:linDisp X
DD:linVel X
DD:linAcc X
DD:angDisp X X
DD:angVel X X
DD:angAccel X X
DD:chaslesThm X
DD:torque
DD:kEnergy X X X
DD:coeffRestitution
DD:reVeInColl X
DD:impulseV X
DD:potEnergy X X X
DD:momentOfInertia X
TM:NewtonSecLawMot
TM:NewtonThirdLawMot
TM:UniversalGravLaw
TM:NewtonSecLawRotMot X

A:objectTy A:objectDimension A:coordinateSystemTy A:axesDefined A:collisionType A:dampingInvolvement A:constraintsAndJointsInvolvement

Continued on next page

42

Table 7: Traceability Matrix Showing the Connections Between Assumptions and Other Items (Continued)

GD:accelGravity
GD:impulse X X X X
IM:transMot X X X X
IM:rotMot X X X
IM:col2D X X X X X X
FR:Simulation-Space
FR:Input-Initial-Conditions
FR:Input-Surface-Properties
FR:Verify-Physical_Constraints
FR:Calculate-Translation-Over-Time
FR:Calculate-Rotation-Over-Time
FR:Determine-Collisions
FR:Determine-Collision-Response-Over-Time
NFR:Performance
NFR:Correctness
NFR:Usability
NFR:Understandability
NFR:Maintainability
LC:Variable-ODE-Solver
LC:Expanded-Collisions X
LC:Include-Dampening X
LC:Include-Joints-Constraints X
UC:Simulate-Rigid-Bodies
UC:External-Input
UC:Cartesian-Coordinate-System
UC:Objects-Rigid-Bodies

A:objectTy A:objectDimension A:coordinateSystemTy A:axesDefined A:collisionType A:dampingInvolvement A:constraintsAndJointsInvolvement

43

Table 8: Traceability Matrix Showing the Connections Between Items and Other Sections

DD:ctrOfMass
DD:linDisp
DD:linVel
DD:linAcc
DD:angDisp
DD:angVel
DD:angAccel
DD:chaslesThm
DD:torque
DD:kEnergy
DD:coeffRestitution
DD:reVeInColl
DD:impulseV
DD:potEnergy
DD:momentOfInertia
TM:NewtonSecLawMot
TM:NewtonThirdLawMot
TM:UniversalGravLaw
TM:NewtonSecLawRotMot
GD:accelGravity X
GD:impulse
IM:transMot X X X X X X
IM:rotMot X X X X
IM:col2D X X

DD:ctrOfMass DD:linDisp DD:linVel DD:linAcc DD:angDisp DD:angVel DD:angAccel DD:chaslesThm DD:torque DD:kEnergy DD:coeffRestitution DD:reVeInColl DD:impulseV DD:potEnergy DD:momentOfInertia TM:NewtonSecLawMot TM:NewtonThirdLawMot TM:UniversalGravLaw TM:NewtonSecLawRotMot GD:accelGravity GD:impulse IM:transMot IM:rotMot IM:col2D

Table 9: Traceability Matrix Showing the Connections Between Requirements, Goal Statements and Other Items

GS:Determine-Linear-Properties
GS:Determine-Angular-Properties

DD:ctrOfMass DD:linDisp DD:linVel DD:linAcc DD:angDisp DD:angVel DD:angAccel DD:chaslesThm DD:torque DD:kEnergy DD:coeffRestitution DD:reVeInColl DD:impulseV DD:potEnergy DD:momentOfInertia TM:NewtonSecLawMot TM:NewtonThirdLawMot TM:UniversalGravLaw TM:NewtonSecLawRotMot GD:accelGravity GD:impulse IM:transMot IM:rotMot IM:col2D FR:Simulation-Space FR:Input-Initial-Conditions FR:Input-Surface-Properties FR:Verify-Physical_Constraints FR:Calculate-Translation-Over-Time FR:Calculate-Rotation-Over-Time FR:Determine-Collisions FR:Determine-Collision-Response-Over-Time NFR:Performance NFR:Correctness NFR:Usability NFR:Understandability NFR:Maintainability

Continued on next page

44

Table 9: Traceability Matrix Showing the Connections Between Requirements, Goal Statements and Other Items (Continued)

FR:Simulation-Space
FR:Input-Initial-Conditions
FR:Input-Surface-Properties
FR:Verify-Physical_Constraints
FR:Calculate-Translation-Over-Time
FR:Calculate-Rotation-Over-Time
FR:Determine-Collisions
FR:Determine-Collision-Response-Over-Time
NFR:Performance
NFR:Correctness
NFR:Usability
NFR:Understandability
NFR:Maintainability

DD:ctrOfMass DD:linDisp DD:linVel DD:linAcc DD:angDisp DD:angVel DD:angAccel DD:chaslesThm DD:torque DD:kEnergy DD:coeffRestitution DD:reVeInColl DD:impulseV DD:potEnergy DD:momentOfInertia TM:NewtonSecLawMot TM:NewtonThirdLawMot TM:UniversalGravLaw TM:NewtonSecLawRotMot GD:accelGravity GD:impulse IM:transMot IM:rotMot IM:col2D FR:Simulation-Space FR:Input-Initial-Conditions FR:Input-Surface-Properties FR:Verify-Physical_Constraints FR:Calculate-Translation-Over-Time FR:Calculate-Rotation-Over-Time FR:Determine-Collisions FR:Determine-Collision-Response-Over-Time NFR:Performance NFR:Correctness NFR:Usability NFR:Understandability NFR:Maintainability

The purpose of the traceability graphs is also to provide easy references on what has
to be additionally modified if a certain component is changed. The arrows in the graphs
represent dependencies. The component at the tail of an arrow is depended on by the com-
ponent at the head of that arrow. Therefore, if a component is changed, the components
that it points to should also be changed. Fig:TraceGraphAvsA shows the dependencies of as-
sumptions on each other. Fig:TraceGraphAvsAll shows the dependencies of data definitions,
theoretical models, general definitions, instance models, requirements, likely changes, and
unlikely changes on the assumptions. Fig:TraceGraphRefvsRef shows the dependencies of
data definitions, theoretical models, general definitions, and instance models on each other.
Fig:TraceGraphAllvsR shows the dependencies of requirements and goal statements on the
data definitions, theoretical models, general definitions, and instance models. Fig:Trace-
GraphAllvsAll shows the dependencies of dependencies of assumptions, models, definitions,
requirements, goals, and changes with each other.

A:assumpOT A:assumpOD A:assumpCST A:assumpAD A:assumpCT A:assumpDI A:assumpCAJI

Figure 2: TraceGraphAvsA

45

DD:ctrOfMass

A:assumpOT

DD:linDisp DD:linVel DD:linAcc DD:angDisp

A:assumpOD

DD:angVel DD:angAccelDD:chaslesThm DD:kEnergy

A:assumpDI

DD:reVeInColl DD:impulseV DD:potEnergyDD:momentOfInertia TM:NewtonSecLawRotMot IM:rotMot

A:assumpAD A:assumpCT A:assumpCAJI

IM:col2D LC:lcECLC:lcID LC:lcIJC

A:assumpCST

DD:torque DD:coeffRestitution TM:NewtonSecLawMot FR:simSpace FR:inputInitialConds FR:inputSurfaceProps FR:verifyPhysCons FR:calcTransOverTime FR:calcRotOverTime FR:deterColls FR:deterCollRespOverTime NFR:performance NFR:correctness NFR:usability NFR:understandability NFR:maintainability LC:lcVODES UC:ucSRB UC:ucEI UC:ucCCS UC:ucORB

Figure 3: TraceGraphAvsAll

IM:rotMot

DD:ctrOfMass DD:linDisp DD:linVel DD:linAcc

TM:NewtonSecLawMot

DD:angDisp DD:angVel DD:angAccel

TM:NewtonSecLawRotMotIM:col2D

DD:chaslesThm DD:torque DD:kEnergy DD:coeffRestitution DD:reVeInColl DD:impulseV DD:potEnergy DD:momentOfInertia

Figure 4: TraceGraphRefvsRef

A:assumpOT A:assumpOD A:assumpCST A:assumpAD A:assumpCT A:assumpDI A:assumpCAJI DD:ctrOfMass DD:linDisp DD:linVel DD:linAcc DD:angDisp DD:angVel DD:angAccel DD:chaslesThm DD:torque DD:kEnergy DD:coeffRestitution DD:reVeInColl DD:impulseV DD:potEnergy DD:momentOfInertia TM:NewtonSecLawMot IM:rotMot TM:NewtonSecLawRotMot IM:col2D FR:simSpace FR:inputInitialConds FR:inputSurfaceProps FR:verifyPhysCons FR:calcTransOverTime FR:calcRotOverTime FR:deterColls FR:deterCollRespOverTime NFR:performance NFR:correctness NFR:usability NFR:understandability NFR:maintainability GS:linearGS GS:angularGS

Figure 5: TraceGraphAllvsR

DD:ctrOfMass

A:assumpOT

DD:linDisp DD:linVelDD:linAccDD:angDisp

A:assumpOD

DD:angVelDD:angAccel DD:chaslesThmDD:kEnergy

A:assumpDI

DD:reVeInColl DD:impulseVDD:potEnergy DD:momentOfInertia

TM:NewtonSecLawRotMotIM:rotMot

A:assumpADA:assumpCTA:assumpCAJI

TM:NewtonSecLawMotIM:col2D

LC:lcEC LC:lcIDLC:lcIJC

A:assumpCST

DD:torque DD:coeffRestitution

FR:simSpace FR:inputInitialConds FR:inputSurfaceProps FR:verifyPhysCons FR:calcTransOverTime FR:calcRotOverTime FR:deterColls FR:deterCollRespOverTime NFR:performance NFR:correctness NFR:usability NFR:understandability NFR:maintainability GS:linearGS GS:angularGS

LC:lcVODES UC:ucSRB UC:ucEI UC:ucCCS UC:ucORB

Figure 6: TraceGraphAllvsAll

For convenience, the following graphs can be found at the links below:

• TraceGraphAvsA

• TraceGraphAvsAll

• TraceGraphRefvsRef

• TraceGraphAllvsR

• TraceGraphAllvsAll

10 Values of Auxiliary Constants
There are no auxiliary constants.

11 References
[1] J. Frederick Bueche. Introduction to Physics for Scientists, Fourth Edition. 1986.
[2] Wikipedia Contributors. Cartesian coordinate system. https://en.wikipedia.org/

wiki/Cartesian_coordinate_system. June 2019.

46

../../../../traceygraphs/gamephysics/avsa.svg
../../../../traceygraphs/gamephysics/avsall.svg
../../../../traceygraphs/gamephysics/refvsref.svg
../../../../traceygraphs/gamephysics/allvsr.svg
../../../../traceygraphs/gamephysics/allvsall.svg
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Cartesian_coordinate_system

[3] Wikipedia Contributors. Chasles’ theorem (kinematics). https://en.wikipedia.
org/wiki/Chasles'_theorem_(kinematics). Nov. 2018.

[4] Wikipedia Contributors. Damping. https://en.wikipedia.org/wiki/Damping_
ratio. July 2019.

[5] The Editors of Encyclopaedia Britannica. Line. https://www.britannica.com/
science/line-mathematics. June 2019.

[6] Nirmitha Koothoor. “A Document Driven Approach to Certifying Scientific Computing
Software”. MA thesis. Hamilton, ON, Canada: McMaster University, 2013.

[7] David L. Parnas. “Designing Software for Ease of Extension and Contraction”. In:
ICSE ’78: Proceedings of the 3rd international conference on Software engineering.
1978, pp. 264–277.

[8] David L. Parnas and P. C. Clements. “A rational design process: How and why to fake
it”. In: IEEE Transactions on Software Engineering 12.2 (Feb. 1986), pp. 251–257.

[9] Rod Pierce. Point. https://www.mathsisfun.com/geometry/point.html. May 2017.
[10] W. Spencer Smith and Nirmitha Koothoor. “A Document-Driven Method for Certi-

fying Scientific Computing Software for Use in Nuclear Safety Analysis”. In: Nuclear
Engineering and Technology 48.2 (Apr. 2016), pp. 404–418.

[11] W. Spencer Smith and Lei Lai. “A new requirements template for scientific comput-
ing”. In: Proceedings of the First International Workshop on Situational Requirements
Engineering Processes - Methods, Techniques and Tools to Support Situation-Specific
Requirements Engineering Processes, SREP’05. Ed. by PJ Agerfalk, N. Kraiem, and
J. Ralyte. In conjunction with 13th IEEE International Requirements Engineering
Conference, Paris, France, 2005, pp. 107–121.

[12] W. Spencer Smith, Lei Lai, and Ridha Khedri. “Requirements Analysis for Engineer-
ing Computation: A Systematic Approach for Improving Software Reliability”. In: Re-
liable Computing, Special Issue on Reliable Engineering Computation 13.1 (Feb. 2007),
pp. 83–107.

[13] Greg Wilson et al. “Best Practices for Scientific Computing, 2013”. In: PLoS Biol 12.1
(2013).

47

https://en.wikipedia.org/wiki/Chasles'_theorem_(kinematics)
https://en.wikipedia.org/wiki/Chasles'_theorem_(kinematics)
https://en.wikipedia.org/wiki/Damping_ratio
https://en.wikipedia.org/wiki/Damping_ratio
https://www.britannica.com/science/line-mathematics
https://www.britannica.com/science/line-mathematics
https://www.mathsisfun.com/geometry/point.html

	Reference Material
	Table of Units
	Table of Symbols
	Abbreviations and Acronyms

	Introduction
	Purpose of Document
	Scope of Requirements
	Characteristics of Intended Reader
	Organization of Document

	General System Description
	System Context
	User Characteristics
	System Constraints

	Specific System Description
	Problem Description
	Terminology and Definitions
	Goal Statements

	Solution Characteristics Specification
	Assumptions
	Theoretical Models
	General Definitions
	Data Definitions
	Instance Models
	Data Constraints
	Properties of a Correct Solution

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Likely Changes
	Unlikely Changes
	Off-The-Shelf Solutions
	Traceability Matrices and Graphs
	Values of Auxiliary Constants
	References

