{-# LANGUAGE RankNTypes, FlexibleInstances, GADTs #-}
{-# OPTIONS_GHC -Wno-redundant-constraints #-}
{-# LANGUAGE MultiParamTypeClasses #-}
module Language.Drasil.Chunk.Eq (
QDefinition,
fromEqn, fromEqn', fromEqnSt,
fromEqnSt', fromEqnSt'', mkQDefSt, mkQuantDef, mkQuantDef', ec,
mkFuncDef, mkFuncDef', mkFuncDefByQ
) where
import Control.Lens ((^.), view, lens, Lens', to)
import Language.Drasil.Chunk.UnitDefn (unitWrapper, MayHaveUnit(getUnit), UnitDefn)
import Language.Drasil.Symbol (HasSymbol(symbol), Symbol)
import Language.Drasil.Classes (NamedIdea(term), Idea(getA),
IsUnit, DefiningExpr(defnExpr), Definition(defn), Quantity,
ConceptDomain(cdom), Express(express))
import Language.Drasil.Chunk.DefinedQuantity (DefinedQuantityDict, dqd, dqd')
import Language.Drasil.Chunk.Concept (cc')
import Language.Drasil.Chunk.NamedIdea (ncUID, mkIdea, nw)
import Language.Drasil.Chunk.Quantity (DefinesQuantity(defLhs), qw)
import Language.Drasil.Expr.Lang (Expr)
import qualified Language.Drasil.Expr.Lang as E (Expr(C))
import Language.Drasil.Expr.Class (ExprC(apply, sy, ($=)))
import Language.Drasil.ModelExpr.Class (ModelExprC(defines))
import qualified Language.Drasil.ModelExpr.Lang as M (ModelExpr(C))
import Language.Drasil.NounPhrase.Core (NP)
import Language.Drasil.Space (Space(..), HasSpace(..))
import Language.Drasil.Sentence (Sentence(EmptyS))
import Language.Drasil.Stages (Stage)
import Language.Drasil.UID (UID, HasUID(..))
import Language.Drasil.WellTyped (RequiresChecking(..))
data QDefinition e where
QD :: DefinedQuantityDict -> [UID] -> e -> QDefinition e
qdQua :: Lens' (QDefinition e) DefinedQuantityDict
qdQua :: forall e (f :: * -> *).
Functor f =>
(DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
qdQua = (QDefinition e -> DefinedQuantityDict)
-> (QDefinition e -> DefinedQuantityDict -> QDefinition e)
-> Lens
(QDefinition e)
(QDefinition e)
DefinedQuantityDict
DefinedQuantityDict
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens (\(QD DefinedQuantityDict
qua [UID]
_ e
_) -> DefinedQuantityDict
qua) (\(QD DefinedQuantityDict
_ [UID]
ins e
e) DefinedQuantityDict
qua' -> DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD DefinedQuantityDict
qua' [UID]
ins e
e)
qdInputs :: Lens' (QDefinition e) [UID]
qdInputs :: forall e (f :: * -> *).
Functor f =>
([UID] -> f [UID]) -> QDefinition e -> f (QDefinition e)
qdInputs = (QDefinition e -> [UID])
-> (QDefinition e -> [UID] -> QDefinition e)
-> Lens (QDefinition e) (QDefinition e) [UID] [UID]
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens (\(QD DefinedQuantityDict
_ [UID]
ins e
_) -> [UID]
ins) (\(QD DefinedQuantityDict
qua [UID]
_ e
e) [UID]
ins' -> DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD DefinedQuantityDict
qua [UID]
ins' e
e)
qdExpr :: Lens' (QDefinition e) e
qdExpr :: forall e (f :: * -> *).
Functor f =>
(e -> f e) -> QDefinition e -> f (QDefinition e)
qdExpr = (QDefinition e -> e)
-> (QDefinition e -> e -> QDefinition e)
-> Lens (QDefinition e) (QDefinition e) e e
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens (\(QD DefinedQuantityDict
_ [UID]
_ e
e) -> e
e) (\(QD DefinedQuantityDict
qua [UID]
ins e
_) e
e' -> DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD DefinedQuantityDict
qua [UID]
ins e
e')
instance HasUID (QDefinition e) where uid :: Getter (QDefinition e) UID
uid = (DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
forall e (f :: * -> *).
Functor f =>
(DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
qdQua ((DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e))
-> ((UID -> f UID) -> DefinedQuantityDict -> f DefinedQuantityDict)
-> (UID -> f UID)
-> QDefinition e
-> f (QDefinition e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (UID -> f UID) -> DefinedQuantityDict -> f DefinedQuantityDict
forall c. HasUID c => Getter c UID
Getter DefinedQuantityDict UID
uid
instance NamedIdea (QDefinition e) where term :: Lens' (QDefinition e) NP
term = (DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
forall e (f :: * -> *).
Functor f =>
(DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
qdQua ((DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e))
-> ((NP -> f NP) -> DefinedQuantityDict -> f DefinedQuantityDict)
-> (NP -> f NP)
-> QDefinition e
-> f (QDefinition e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (NP -> f NP) -> DefinedQuantityDict -> f DefinedQuantityDict
forall c. NamedIdea c => Lens' c NP
Lens' DefinedQuantityDict NP
term
instance Idea (QDefinition e) where getA :: QDefinition e -> Maybe String
getA = DefinedQuantityDict -> Maybe String
forall c. Idea c => c -> Maybe String
getA (DefinedQuantityDict -> Maybe String)
-> (QDefinition e -> DefinedQuantityDict)
-> QDefinition e
-> Maybe String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (QDefinition e
-> Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
-> DefinedQuantityDict
forall s a. s -> Getting a s a -> a
^. Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
forall e (f :: * -> *).
Functor f =>
(DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
qdQua)
instance DefinesQuantity (QDefinition e) where defLhs :: Getter (QDefinition e) QuantityDict
defLhs = (DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
forall e (f :: * -> *).
Functor f =>
(DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
qdQua ((DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e))
-> ((QuantityDict -> f QuantityDict)
-> DefinedQuantityDict -> f DefinedQuantityDict)
-> (QuantityDict -> f QuantityDict)
-> QDefinition e
-> f (QDefinition e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (DefinedQuantityDict -> QuantityDict)
-> (QuantityDict -> f QuantityDict)
-> DefinedQuantityDict
-> f DefinedQuantityDict
forall (p :: * -> * -> *) (f :: * -> *) s a.
(Profunctor p, Contravariant f) =>
(s -> a) -> Optic' p f s a
to DefinedQuantityDict -> QuantityDict
forall q. (Quantity q, MayHaveUnit q) => q -> QuantityDict
qw
instance HasSpace (QDefinition e) where typ :: Getter (QDefinition e) Space
typ = (DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
forall e (f :: * -> *).
Functor f =>
(DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
qdQua ((DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e))
-> ((Space -> f Space)
-> DefinedQuantityDict -> f DefinedQuantityDict)
-> (Space -> f Space)
-> QDefinition e
-> f (QDefinition e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Space -> f Space) -> DefinedQuantityDict -> f DefinedQuantityDict
forall c. HasSpace c => Getter c Space
Getter DefinedQuantityDict Space
typ
instance HasSymbol (QDefinition e) where symbol :: QDefinition e -> Stage -> Symbol
symbol = DefinedQuantityDict -> Stage -> Symbol
forall c. HasSymbol c => c -> Stage -> Symbol
symbol (DefinedQuantityDict -> Stage -> Symbol)
-> (QDefinition e -> DefinedQuantityDict)
-> QDefinition e
-> Stage
-> Symbol
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (QDefinition e
-> Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
-> DefinedQuantityDict
forall s a. s -> Getting a s a -> a
^. Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
forall e (f :: * -> *).
Functor f =>
(DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
qdQua)
instance Definition (QDefinition e) where defn :: Lens' (QDefinition e) Sentence
defn = (DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
forall e (f :: * -> *).
Functor f =>
(DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
qdQua ((DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e))
-> ((Sentence -> f Sentence)
-> DefinedQuantityDict -> f DefinedQuantityDict)
-> (Sentence -> f Sentence)
-> QDefinition e
-> f (QDefinition e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Sentence -> f Sentence)
-> DefinedQuantityDict -> f DefinedQuantityDict
forall c. Definition c => Lens' c Sentence
Lens' DefinedQuantityDict Sentence
defn
instance Quantity (QDefinition e) where
instance Eq (QDefinition e) where QDefinition e
a == :: QDefinition e -> QDefinition e -> Bool
== QDefinition e
b = QDefinition e
a QDefinition e -> Getting UID (QDefinition e) UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID (QDefinition e) UID
forall c. HasUID c => Getter c UID
Getter (QDefinition e) UID
uid UID -> UID -> Bool
forall a. Eq a => a -> a -> Bool
== QDefinition e
b QDefinition e -> Getting UID (QDefinition e) UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID (QDefinition e) UID
forall c. HasUID c => Getter c UID
Getter (QDefinition e) UID
uid
instance MayHaveUnit (QDefinition e) where getUnit :: QDefinition e -> Maybe UnitDefn
getUnit = DefinedQuantityDict -> Maybe UnitDefn
forall u. MayHaveUnit u => u -> Maybe UnitDefn
getUnit (DefinedQuantityDict -> Maybe UnitDefn)
-> (QDefinition e -> DefinedQuantityDict)
-> QDefinition e
-> Maybe UnitDefn
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
-> QDefinition e -> DefinedQuantityDict
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
view Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
forall e (f :: * -> *).
Functor f =>
(DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
qdQua
instance DefiningExpr QDefinition where defnExpr :: forall e (f :: * -> *).
Functor f =>
(e -> f e) -> QDefinition e -> f (QDefinition e)
defnExpr = (e -> f e) -> QDefinition e -> f (QDefinition e)
forall e (f :: * -> *).
Functor f =>
(e -> f e) -> QDefinition e -> f (QDefinition e)
qdExpr
instance Express e => Express (QDefinition e) where
express :: QDefinition e -> ModelExpr
express QDefinition e
q = ModelExpr -> ModelExpr
f (ModelExpr -> ModelExpr) -> ModelExpr -> ModelExpr
forall a b. (a -> b) -> a -> b
$ e -> ModelExpr
forall c. Express c => c -> ModelExpr
express (e -> ModelExpr) -> e -> ModelExpr
forall a b. (a -> b) -> a -> b
$ QDefinition e
q QDefinition e -> Getting e (QDefinition e) e -> e
forall s a. s -> Getting a s a -> a
^. Getting e (QDefinition e) e
forall e (f :: * -> *).
Functor f =>
(e -> f e) -> QDefinition e -> f (QDefinition e)
forall (c :: * -> *) e. DefiningExpr c => Lens' (c e) e
defnExpr
where
f :: ModelExpr -> ModelExpr
f = case QDefinition e
q QDefinition e -> Getting [UID] (QDefinition e) [UID] -> [UID]
forall s a. s -> Getting a s a -> a
^. Getting [UID] (QDefinition e) [UID]
forall e (f :: * -> *).
Functor f =>
([UID] -> f [UID]) -> QDefinition e -> f (QDefinition e)
qdInputs of
[] -> ModelExpr -> ModelExpr -> ModelExpr
forall r. ModelExprC r => r -> r -> r
defines (QDefinition e -> ModelExpr
forall c. (HasUID c, HasSymbol c) => c -> ModelExpr
forall r c. (ExprC r, HasUID c, HasSymbol c) => c -> r
sy QDefinition e
q)
[UID]
is -> ModelExpr -> ModelExpr -> ModelExpr
forall r. ModelExprC r => r -> r -> r
defines (ModelExpr -> ModelExpr -> ModelExpr)
-> ModelExpr -> ModelExpr -> ModelExpr
forall a b. (a -> b) -> a -> b
$ QDefinition e -> [ModelExpr] -> ModelExpr
forall f. (HasUID f, HasSymbol f) => f -> [ModelExpr] -> ModelExpr
forall r f. (ExprC r, HasUID f, HasSymbol f) => f -> [r] -> r
apply QDefinition e
q ((UID -> ModelExpr) -> [UID] -> [ModelExpr]
forall a b. (a -> b) -> [a] -> [b]
map UID -> ModelExpr
M.C [UID]
is)
instance ConceptDomain (QDefinition e) where cdom :: QDefinition e -> [UID]
cdom = DefinedQuantityDict -> [UID]
forall c. ConceptDomain c => c -> [UID]
cdom (DefinedQuantityDict -> [UID])
-> (QDefinition e -> DefinedQuantityDict) -> QDefinition e -> [UID]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
-> QDefinition e -> DefinedQuantityDict
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
view Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
forall e (f :: * -> *).
Functor f =>
(DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
qdQua
instance RequiresChecking (QDefinition Expr) Expr Space where
requiredChecks :: QDefinition Expr -> [(Expr, Space)]
requiredChecks (QD DefinedQuantityDict
q [UID]
is Expr
e) = (Expr, Space) -> [(Expr, Space)]
forall a. a -> [a]
forall (f :: * -> *) a. Applicative f => a -> f a
pure (DefinedQuantityDict -> [Expr] -> Expr
forall f. (HasUID f, HasSymbol f) => f -> [Expr] -> Expr
forall r f. (ExprC r, HasUID f, HasSymbol f) => f -> [r] -> r
apply DefinedQuantityDict
q ((UID -> Expr) -> [UID] -> [Expr]
forall a b. (a -> b) -> [a] -> [b]
map UID -> Expr
E.C [UID]
is) Expr -> Expr -> Expr
forall r. ExprC r => r -> r -> r
$= Expr
e, Space
Boolean)
fromEqn :: IsUnit u => String -> NP -> Sentence -> Symbol -> Space -> u -> e -> QDefinition e
fromEqn :: forall u e.
IsUnit u =>
String
-> NP -> Sentence -> Symbol -> Space -> u -> e -> QDefinition e
fromEqn String
nm NP
desc Sentence
def Symbol
symb Space
sp u
un =
DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD (ConceptChunk -> Symbol -> Space -> u -> DefinedQuantityDict
forall u.
IsUnit u =>
ConceptChunk -> Symbol -> Space -> u -> DefinedQuantityDict
dqd (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (String -> NP -> Maybe String -> IdeaDict
mkIdea String
nm NP
desc Maybe String
forall a. Maybe a
Nothing) Sentence
def) Symbol
symb Space
sp u
un) []
fromEqn' :: String -> NP -> Sentence -> Symbol -> Space -> e -> QDefinition e
fromEqn' :: forall e.
String -> NP -> Sentence -> Symbol -> Space -> e -> QDefinition e
fromEqn' String
nm NP
desc Sentence
def Symbol
symb Space
sp =
DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD (ConceptChunk
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> DefinedQuantityDict
dqd' (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (String -> NP -> Maybe String -> IdeaDict
mkIdea String
nm NP
desc Maybe String
forall a. Maybe a
Nothing) Sentence
def) (Symbol -> Stage -> Symbol
forall a b. a -> b -> a
const Symbol
symb) Space
sp Maybe UnitDefn
forall a. Maybe a
Nothing) []
fromEqnSt :: IsUnit u => UID -> NP -> Sentence -> (Stage -> Symbol) ->
Space -> u -> e -> QDefinition e
fromEqnSt :: forall u e.
IsUnit u =>
UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> u
-> e
-> QDefinition e
fromEqnSt UID
nm NP
desc Sentence
def Stage -> Symbol
symb Space
sp u
un =
DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD (ConceptChunk
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> DefinedQuantityDict
dqd' (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (IdeaDict -> IdeaDict
forall c. Idea c => c -> IdeaDict
nw (IdeaDict -> IdeaDict) -> IdeaDict -> IdeaDict
forall a b. (a -> b) -> a -> b
$ UID -> NP -> IdeaDict
ncUID UID
nm NP
desc) Sentence
def) Stage -> Symbol
symb Space
sp (UnitDefn -> Maybe UnitDefn
forall a. a -> Maybe a
Just (UnitDefn -> Maybe UnitDefn) -> UnitDefn -> Maybe UnitDefn
forall a b. (a -> b) -> a -> b
$ u -> UnitDefn
forall u. IsUnit u => u -> UnitDefn
unitWrapper u
un)) []
fromEqnSt' :: UID -> NP -> Sentence -> (Stage -> Symbol) -> Space -> e -> QDefinition e
fromEqnSt' :: forall e.
UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> e
-> QDefinition e
fromEqnSt' UID
nm NP
desc Sentence
def Stage -> Symbol
symb Space
sp =
DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD (ConceptChunk
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> DefinedQuantityDict
dqd' (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (IdeaDict -> IdeaDict
forall c. Idea c => c -> IdeaDict
nw (IdeaDict -> IdeaDict) -> IdeaDict -> IdeaDict
forall a b. (a -> b) -> a -> b
$ UID -> NP -> IdeaDict
ncUID UID
nm NP
desc) Sentence
def) Stage -> Symbol
symb Space
sp Maybe UnitDefn
forall a. Maybe a
Nothing) []
fromEqnSt'' :: String -> NP -> Sentence -> (Stage -> Symbol) -> Space -> e ->
QDefinition e
fromEqnSt'' :: forall e.
String
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> e
-> QDefinition e
fromEqnSt'' String
nm NP
desc Sentence
def Stage -> Symbol
symb Space
sp =
DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD (ConceptChunk
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> DefinedQuantityDict
dqd' (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (String -> NP -> Maybe String -> IdeaDict
mkIdea String
nm NP
desc Maybe String
forall a. Maybe a
Nothing) Sentence
def) Stage -> Symbol
symb Space
sp Maybe UnitDefn
forall a. Maybe a
Nothing) []
mkQDefSt :: UID -> NP -> Sentence -> (Stage -> Symbol) -> Space ->
Maybe UnitDefn -> e -> QDefinition e
mkQDefSt :: forall e.
UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> e
-> QDefinition e
mkQDefSt UID
u NP
n Sentence
s Stage -> Symbol
symb Space
sp (Just UnitDefn
ud) e
e = UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> UnitDefn
-> e
-> QDefinition e
forall u e.
IsUnit u =>
UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> u
-> e
-> QDefinition e
fromEqnSt UID
u NP
n Sentence
s Stage -> Symbol
symb Space
sp UnitDefn
ud e
e
mkQDefSt UID
u NP
n Sentence
s Stage -> Symbol
symb Space
sp Maybe UnitDefn
Nothing e
e = UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> e
-> QDefinition e
forall e.
UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> e
-> QDefinition e
fromEqnSt' UID
u NP
n Sentence
s Stage -> Symbol
symb Space
sp e
e
mkQuantDef :: (Quantity c, MayHaveUnit c) => c -> e -> QDefinition e
mkQuantDef :: forall c e. (Quantity c, MayHaveUnit c) => c -> e -> QDefinition e
mkQuantDef c
c = UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> e
-> QDefinition e
forall e.
UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> e
-> QDefinition e
mkQDefSt (c
c c -> Getting UID c UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID c UID
forall c. HasUID c => Getter c UID
Getter c UID
uid) (c
c c -> Getting NP c NP -> NP
forall s a. s -> Getting a s a -> a
^. Getting NP c NP
forall c. NamedIdea c => Lens' c NP
Lens' c NP
term) Sentence
EmptyS (c -> Stage -> Symbol
forall c. HasSymbol c => c -> Stage -> Symbol
symbol c
c) (c
c c -> Getting Space c Space -> Space
forall s a. s -> Getting a s a -> a
^. Getting Space c Space
forall c. HasSpace c => Getter c Space
Getter c Space
typ) (c -> Maybe UnitDefn
forall u. MayHaveUnit u => u -> Maybe UnitDefn
getUnit c
c)
mkQuantDef' :: (Quantity c, MayHaveUnit c) => c -> NP -> e -> QDefinition e
mkQuantDef' :: forall c e.
(Quantity c, MayHaveUnit c) =>
c -> NP -> e -> QDefinition e
mkQuantDef' c
c NP
t = UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> e
-> QDefinition e
forall e.
UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> e
-> QDefinition e
mkQDefSt (c
c c -> Getting UID c UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID c UID
forall c. HasUID c => Getter c UID
Getter c UID
uid) NP
t Sentence
EmptyS (c -> Stage -> Symbol
forall c. HasSymbol c => c -> Stage -> Symbol
symbol c
c) (c
c c -> Getting Space c Space -> Space
forall s a. s -> Getting a s a -> a
^. Getting Space c Space
forall c. HasSpace c => Getter c Space
Getter c Space
typ) (c -> Maybe UnitDefn
forall u. MayHaveUnit u => u -> Maybe UnitDefn
getUnit c
c)
ec :: (Quantity c, MayHaveUnit c) => c -> e -> QDefinition e
ec :: forall c e. (Quantity c, MayHaveUnit c) => c -> e -> QDefinition e
ec c
c = DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD (ConceptChunk
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> DefinedQuantityDict
dqd' (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (c -> IdeaDict
forall c. Idea c => c -> IdeaDict
nw c
c) Sentence
EmptyS) (c -> Stage -> Symbol
forall c. HasSymbol c => c -> Stage -> Symbol
symbol c
c) (c
c c -> Getting Space c Space -> Space
forall s a. s -> Getting a s a -> a
^. Getting Space c Space
forall c. HasSpace c => Getter c Space
Getter c Space
typ) (c -> Maybe UnitDefn
forall u. MayHaveUnit u => u -> Maybe UnitDefn
getUnit c
c)) []
mkFuncDef0 :: (HasUID f, HasSymbol f, HasSpace f,
HasUID i, HasSymbol i, HasSpace i) =>
f -> NP -> Sentence -> Maybe UnitDefn -> [i] -> e -> QDefinition e
mkFuncDef0 :: forall f i e.
(HasUID f, HasSymbol f, HasSpace f, HasUID i, HasSymbol i,
HasSpace i) =>
f -> NP -> Sentence -> Maybe UnitDefn -> [i] -> e -> QDefinition e
mkFuncDef0 f
f NP
n Sentence
s Maybe UnitDefn
u [i]
is = DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD
(ConceptChunk
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> DefinedQuantityDict
dqd' (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (IdeaDict -> IdeaDict
forall c. Idea c => c -> IdeaDict
nw (UID -> NP -> IdeaDict
ncUID (f
f f -> Getting UID f UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID f UID
forall c. HasUID c => Getter c UID
Getter f UID
uid) NP
n)) Sentence
s) (f -> Stage -> Symbol
forall c. HasSymbol c => c -> Stage -> Symbol
symbol f
f)
(f
f f -> Getting Space f Space -> Space
forall s a. s -> Getting a s a -> a
^. Getting Space f Space
forall c. HasSpace c => Getter c Space
Getter f Space
typ) Maybe UnitDefn
u) ((i -> UID) -> [i] -> [UID]
forall a b. (a -> b) -> [a] -> [b]
map (i -> Getting UID i UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID i UID
forall c. HasUID c => Getter c UID
Getter i UID
uid) [i]
is)
mkFuncDef :: (HasUID f, HasSymbol f, HasSpace f,
HasUID i, HasSymbol i, HasSpace i,
IsUnit u) =>
f -> NP -> Sentence -> u -> [i] -> e -> QDefinition e
mkFuncDef :: forall f i u e.
(HasUID f, HasSymbol f, HasSpace f, HasUID i, HasSymbol i,
HasSpace i, IsUnit u) =>
f -> NP -> Sentence -> u -> [i] -> e -> QDefinition e
mkFuncDef f
f NP
n Sentence
s u
u = f -> NP -> Sentence -> Maybe UnitDefn -> [i] -> e -> QDefinition e
forall f i e.
(HasUID f, HasSymbol f, HasSpace f, HasUID i, HasSymbol i,
HasSpace i) =>
f -> NP -> Sentence -> Maybe UnitDefn -> [i] -> e -> QDefinition e
mkFuncDef0 f
f NP
n Sentence
s (UnitDefn -> Maybe UnitDefn
forall a. a -> Maybe a
Just (UnitDefn -> Maybe UnitDefn) -> UnitDefn -> Maybe UnitDefn
forall a b. (a -> b) -> a -> b
$ u -> UnitDefn
forall u. IsUnit u => u -> UnitDefn
unitWrapper u
u)
mkFuncDef' :: (HasUID f, HasSymbol f, HasSpace f,
HasUID i, HasSymbol i, HasSpace i) =>
f -> NP -> Sentence -> [i] -> e -> QDefinition e
mkFuncDef' :: forall f i e.
(HasUID f, HasSymbol f, HasSpace f, HasUID i, HasSymbol i,
HasSpace i) =>
f -> NP -> Sentence -> [i] -> e -> QDefinition e
mkFuncDef' f
f NP
n Sentence
s = f -> NP -> Sentence -> Maybe UnitDefn -> [i] -> e -> QDefinition e
forall f i e.
(HasUID f, HasSymbol f, HasSpace f, HasUID i, HasSymbol i,
HasSpace i) =>
f -> NP -> Sentence -> Maybe UnitDefn -> [i] -> e -> QDefinition e
mkFuncDef0 f
f NP
n Sentence
s Maybe UnitDefn
forall a. Maybe a
Nothing
mkFuncDefByQ :: (Quantity c, MayHaveUnit c, HasSpace c,
Quantity i, HasSpace i) =>
c -> [i] -> e -> QDefinition e
mkFuncDefByQ :: forall c i e.
(Quantity c, MayHaveUnit c, HasSpace c, Quantity i, HasSpace i) =>
c -> [i] -> e -> QDefinition e
mkFuncDefByQ c
f = case c -> Maybe UnitDefn
forall u. MayHaveUnit u => u -> Maybe UnitDefn
getUnit c
f of
Just UnitDefn
u -> c -> NP -> Sentence -> UnitDefn -> [i] -> e -> QDefinition e
forall f i u e.
(HasUID f, HasSymbol f, HasSpace f, HasUID i, HasSymbol i,
HasSpace i, IsUnit u) =>
f -> NP -> Sentence -> u -> [i] -> e -> QDefinition e
mkFuncDef c
f (c
f c -> Getting NP c NP -> NP
forall s a. s -> Getting a s a -> a
^. Getting NP c NP
forall c. NamedIdea c => Lens' c NP
Lens' c NP
term) Sentence
EmptyS UnitDefn
u
Maybe UnitDefn
Nothing -> c -> NP -> Sentence -> [i] -> e -> QDefinition e
forall f i e.
(HasUID f, HasSymbol f, HasSpace f, HasUID i, HasSymbol i,
HasSpace i) =>
f -> NP -> Sentence -> [i] -> e -> QDefinition e
mkFuncDef' c
f (c
f c -> Getting NP c NP -> NP
forall s a. s -> Getting a s a -> a
^. Getting NP c NP
forall c. NamedIdea c => Lens' c NP
Lens' c NP
term) Sentence
EmptyS