Data Definitions

This section collects and defines all the data needed to build the instance models.

RefnameDD:intersliceWtrF
LabelInterslice normal water forces
Symbol\(\boldsymbol{H}\)
Units\(\frac{\text{N}}{\text{m}}\)
Equation\[\boldsymbol{H}=\begin{cases}\frac{\left({\boldsymbol{y}_{\text{slope},i}}-{\boldsymbol{y}_{\text{slip},i}}\right)^{2}}{2}\,{γ_{w}}+\left({\boldsymbol{y}_{\text{wt},i}}-{\boldsymbol{y}_{\text{slope},i}}\right)^{2}\,{γ_{w}}, & {\boldsymbol{y}_{\text{wt},i}}\geq{}{\boldsymbol{y}_{\text{slope},i}}\\\frac{\left({\boldsymbol{y}_{\text{wt},i}}-{\boldsymbol{y}_{\text{slip},i}}\right)^{2}}{2}\,{γ_{w}}, & {\boldsymbol{y}_{\text{slope},i}}\gt{}{\boldsymbol{y}_{\text{wt},i}}\land{}{\boldsymbol{y}_{\text{wt},i}}\gt{}{\boldsymbol{y}_{\text{slip},i}}\\0, & {\boldsymbol{y}_{\text{wt},i}}\leq{}{\boldsymbol{y}_{\text{slip},i}}\end{cases}\]
Description
  • \(\boldsymbol{H}\) is the interslice normal water forces (\(\frac{\text{N}}{\text{m}}\))
  • \({\boldsymbol{y}_{\text{slope}}}\) is the \(y\)-coordinates of the slope (\({\text{m}}\))
  • \(i\) is the index (Unitless)
  • \({\boldsymbol{y}_{\text{slip}}}\) is the \(y\)-coordinates of the slip surface (\({\text{m}}\))
  • \({γ_{w}}\) is the unit weight of water (\(\frac{\text{N}}{\text{m}^{3}}\))
  • \({\boldsymbol{y}_{\text{wt}}}\) is the \(y\)-coordinates of the water table (\({\text{m}}\))
Sourcefredlund1977
RefByGD:resShearWO, IM:nrmShrForNum, and GD:mobShearWO
RefnameDD:angleA
LabelBase angles
Symbol\(\boldsymbol{α}\)
Units\({{}^{\circ}}\)
Equation\[\boldsymbol{α}=\arctan\left(\frac{{\boldsymbol{y}_{\text{slip},i}}-{\boldsymbol{y}_{\text{slip},i-1}}}{{\boldsymbol{x}_{\text{slip},i}}-{\boldsymbol{x}_{\text{slip},i-1}}}\right)\]
Description
  • \(\boldsymbol{α}\) is the base angles (\({{}^{\circ}}\))
  • \({\boldsymbol{y}_{\text{slip}}}\) is the \(y\)-coordinates of the slip surface (\({\text{m}}\))
  • \(i\) is the index (Unitless)
  • \({\boldsymbol{x}_{\text{slip}}}\) is the \(x\)-coordinates of the slip surface (\({\text{m}}\))
Notes
Sourcefredlund1977
RefByGD:resShearWO, IM:nrmShrForNum, GD:normForcEq, GD:momentEql, GD:mobShearWO, GD:bsShrFEq, DD:lengthLb, DD:convertFunc2, and DD:convertFunc1
RefnameDD:angleB
LabelSurface angles
Symbol\(\boldsymbol{β}\)
Units\({{}^{\circ}}\)
Equation\[\boldsymbol{β}=\arctan\left(\frac{{\boldsymbol{y}_{\text{slope},i}}-{\boldsymbol{y}_{\text{slope},i-1}}}{{\boldsymbol{x}_{\text{slope},i}}-{\boldsymbol{x}_{\text{slope},i-1}}}\right)\]
Description
  • \(\boldsymbol{β}\) is the surface angles (\({{}^{\circ}}\))
  • \({\boldsymbol{y}_{\text{slope}}}\) is the \(y\)-coordinates of the slope (\({\text{m}}\))
  • \(i\) is the index (Unitless)
  • \({\boldsymbol{x}_{\text{slope}}}\) is the \(x\)-coordinates of the slope (\({\text{m}}\))
Notes
Sourcefredlund1977
RefByGD:resShearWO, IM:nrmShrForNum, GD:normForcEq, GD:momentEql, GD:mobShearWO, GD:bsShrFEq, and DD:lengthLs
RefnameDD:lengthB
LabelBase width of slices
Symbol\(\boldsymbol{b}\)
Units\({\text{m}}\)
Equation\[\boldsymbol{b}={\boldsymbol{x}_{\text{slip},i}}-{\boldsymbol{x}_{\text{slip},i-1}}\]
Description
  • \(\boldsymbol{b}\) is the base width of slices (\({\text{m}}\))
  • \({\boldsymbol{x}_{\text{slip}}}\) is the \(x\)-coordinates of the slip surface (\({\text{m}}\))
  • \(i\) is the index (Unitless)
Sourcefredlund1977
RefByGD:sliceWght, IM:nrmShrForNum, IM:nrmShrForDen, GD:momentEql, DD:lengthLs, and DD:lengthLb
RefnameDD:lengthLb
LabelTotal base lengths of slices
Symbol\({\boldsymbol{L}_{b}}\)
Units\({\text{m}}\)
Equation\[{\boldsymbol{L}_{b}}={\boldsymbol{b}}_{i}\,\sec\left({\boldsymbol{α}}_{i}\right)\]
Description
  • \({\boldsymbol{L}_{b}}\) is the total base lengths of slices (\({\text{m}}\))
  • \(\boldsymbol{b}\) is the base width of slices (\({\text{m}}\))
  • \(i\) is the index (Unitless)
  • \(\boldsymbol{α}\) is the base angles (\({{}^{\circ}}\))
Notes
Sourcefredlund1977
RefByGD:resShr, GD:resShearWO, GD:mobShr, and GD:baseWtrF
RefnameDD:lengthLs
LabelSurface lengths of slices
Symbol\({\boldsymbol{L}_{s}}\)
Units\({\text{m}}\)
Equation\[{\boldsymbol{L}_{s}}={\boldsymbol{b}}_{i}\,\sec\left({\boldsymbol{β}}_{i}\right)\]
Description
  • \({\boldsymbol{L}_{s}}\) is the surface lengths of slices (\({\text{m}}\))
  • \(\boldsymbol{b}\) is the base width of slices (\({\text{m}}\))
  • \(i\) is the index (Unitless)
  • \(\boldsymbol{β}\) is the surface angles (\({{}^{\circ}}\))
Notes
Sourcefredlund1977
RefByGD:srfWtrF
RefnameDD:slcHeight
Label\(y\)-direction heights of slices
Symbol\(\boldsymbol{h}\)
Units\({\text{m}}\)
Equation\[\boldsymbol{h}=\frac{1}{2}\,\left({{\boldsymbol{h}^{\text{R}}}}_{i}+{{\boldsymbol{h}^{\text{L}}}}_{i}\right)\]
Description
  • \(\boldsymbol{h}\) is the \(y\)-direction heights of slices (\({\text{m}}\))
  • \({\boldsymbol{h}^{\text{R}}}\) is the heights of the right side of slices (\({\text{m}}\))
  • \(i\) is the index (Unitless)
  • \({\boldsymbol{h}^{\text{L}}}\) is the heights of the left side of slices (\({\text{m}}\))
Notes
Sourcefredlund1977
RefByIM:nrmShrForNum and GD:momentEql
RefnameDD:normStress
LabelTotal normal stress
Symbol\(σ\)
Units\({\text{Pa}}\)
Equation\[σ=\frac{{F_{\text{n}}}}{A}\]
Description
  • \(σ\) is the total normal stress (\({\text{Pa}}\))
  • \({F_{\text{n}}}\) is the total normal force (\({\text{N}}\))
  • \(A\) is the area (\({\text{m}^{2}}\))
Sourcehuston2008
RefByGD:resShr, GD:effNormF, and TM:effStress
RefnameDD:tangStress
LabelTangential stress
Symbol\(τ\)
Units\({\text{Pa}}\)
Equation\[τ=\frac{{F_{\text{t}}}}{A}\]
Description
  • \(τ\) is the tangential stress (\({\text{Pa}}\))
  • \({F_{\text{t}}}\) is the tangential force (\({\text{N}}\))
  • \(A\) is the area (\({\text{m}^{2}}\))
Sourcehuston2008
RefByGD:resShr
RefnameDD:torque
LabelTorque
Symbol\(\boldsymbol{τ}\)
Units\(\text{N}\text{m}\)
Equation\[\boldsymbol{τ}=\boldsymbol{r}\times\boldsymbol{F}\]
Description
  • \(\boldsymbol{τ}\) is the torque (\(\text{N}\text{m}\))
  • \(\boldsymbol{r}\) is the position vector (\({\text{m}}\))
  • \(\boldsymbol{F}\) is the force (\({\text{N}}\))
Notes
  • The torque on a body measures the tendency of a force to rotate the body around an axis or pivot.
Source
RefByGD:momentEql
RefnameDD:ratioVariation
LabelInterslice normal to shear force ratio variation function
Symbol\(\boldsymbol{f}\)
UnitsUnitless
Equation\[\boldsymbol{f}=\begin{cases}1, & \mathit{const_f}\\\sin\left(π\,\frac{{\boldsymbol{x}_{\text{slip},i}}-{\boldsymbol{x}_{\text{slip},0}}}{{\boldsymbol{x}_{\text{slip},n}}-{\boldsymbol{x}_{\text{slip},0}}}\right), & \neg{}\mathit{const_f}\end{cases}\]
Description
  • \(\boldsymbol{f}\) is the interslice normal to shear force ratio variation function (Unitless)
  • \(π\) is the ratio of circumference to diameter for any circle (Unitless)
  • \({\boldsymbol{x}_{\text{slip}}}\) is the \(x\)-coordinates of the slip surface (\({\text{m}}\))
  • \(i\) is the index (Unitless)
  • \(n\) is the number of slices (Unitless)
  • \(\mathit{const_f}\) is the decision on f (Unitless)
Sourcefredlund1977
RefByIM:nrmShrForDen, GD:normShrR, DD:convertFunc2, and DD:convertFunc1
RefnameDD:convertFunc1
LabelFirst function for incorporating interslice forces into shear force
Symbol\(\boldsymbol{Φ}\)
UnitsUnitless
Equation\[\boldsymbol{Φ}=\left(λ\,{\boldsymbol{f}}_{i}\,\cos\left({\boldsymbol{α}}_{i}\right)-\sin\left({\boldsymbol{α}}_{i}\right)\right)\,\tan\left(φ’\right)-\left(λ\,{\boldsymbol{f}}_{i}\,\sin\left({\boldsymbol{α}}_{i}\right)+\cos\left({\boldsymbol{α}}_{i}\right)\right)\,{F_{\text{S}}}\]
Description
  • \(\boldsymbol{Φ}\) is the first function for incorporating interslice forces into shear force (Unitless)
  • \(λ\) is the proportionality constant (Unitless)
  • \(\boldsymbol{f}\) is the interslice normal to shear force ratio variation function (Unitless)
  • \(i\) is the index (Unitless)
  • \(\boldsymbol{α}\) is the base angles (\({{}^{\circ}}\))
  • \(φ’\) is the effective angle of friction (\({{}^{\circ}}\))
  • \({F_{\text{S}}}\) is the factor of safety (Unitless)
Notes
Sourcechen2005 and karchewski2012
RefByIM:intsliceFs, IM:fctSfty, and DD:convertFunc2
RefnameDD:convertFunc2
LabelSecond function for incorporating interslice forces into shear force
Symbol\(\boldsymbol{Ψ}\)
UnitsUnitless
Equation\[\boldsymbol{Ψ}=\frac{\left(λ\,{\boldsymbol{f}}_{i}\,\cos\left({\boldsymbol{α}}_{i}\right)-\sin\left({\boldsymbol{α}}_{i}\right)\right)\,\tan\left(φ’\right)-\left(λ\,{\boldsymbol{f}}_{i}\,\sin\left({\boldsymbol{α}}_{i}\right)+\cos\left({\boldsymbol{α}}_{i}\right)\right)\,{F_{\text{S}}}}{{\boldsymbol{Φ}}_{i-1}}\]
Description
  • \(\boldsymbol{Ψ}\) is the second function for incorporating interslice forces into shear force (Unitless)
  • \(λ\) is the proportionality constant (Unitless)
  • \(\boldsymbol{f}\) is the interslice normal to shear force ratio variation function (Unitless)
  • \(i\) is the index (Unitless)
  • \(\boldsymbol{α}\) is the base angles (\({{}^{\circ}}\))
  • \(φ’\) is the effective angle of friction (\({{}^{\circ}}\))
  • \({F_{\text{S}}}\) is the factor of safety (Unitless)
  • \(\boldsymbol{Φ}\) is the first function for incorporating interslice forces into shear force (Unitless)
Notes
Sourcechen2005 and karchewski2012
RefByIM:intsliceFs and IM:fctSfty
RefnameDD:nrmForceSumDD
LabelSums of the interslice normal forces
Symbol\({{\boldsymbol{F}_{\text{x}}}^{\text{G}}}\)
Units\({\text{N}}\)
Equation\[{{\boldsymbol{F}_{\text{x}}}^{\text{G}}}={\boldsymbol{G}}_{i}+{\boldsymbol{G}}_{i-1}\]
Description
  • \({{\boldsymbol{F}_{\text{x}}}^{\text{G}}}\) is the sums of the interslice normal forces (\({\text{N}}\))
  • \(\boldsymbol{G}\) is the interslice normal forces (\(\frac{\text{N}}{\text{m}}\))
  • \(i\) is the index (Unitless)
Sourcefredlund1977
RefBy
RefnameDD:watForceSumDD
LabelSums of the interslice normal water forces
Symbol\({{\boldsymbol{F}_{\text{x}}}^{\text{H}}}\)
Units\({\text{N}}\)
Equation\[{{\boldsymbol{F}_{\text{x}}}^{\text{H}}}={\boldsymbol{H}}_{i}+{\boldsymbol{H}}_{i-1}\]
Description
  • \({{\boldsymbol{F}_{\text{x}}}^{\text{H}}}\) is the sums of the interslice normal water forces (\({\text{N}}\))
  • \(\boldsymbol{H}\) is the interslice normal water forces (\(\frac{\text{N}}{\text{m}}\))
  • \(i\) is the index (Unitless)
Sourcefredlund1977
RefBy
RefnameDD:sliceHghtRightDD
LabelHeights of the right side of slices
Symbol\({\boldsymbol{h}^{\text{R}}}\)
Units\({\text{m}}\)
Equation\[{\boldsymbol{h}^{\text{R}}}={\boldsymbol{y}_{\text{slope},i}}-{\boldsymbol{y}_{\text{slip},i}}\]
Description
  • \({\boldsymbol{h}^{\text{R}}}\) is the heights of the right side of slices (\({\text{m}}\))
  • \({\boldsymbol{y}_{\text{slope}}}\) is the \(y\)-coordinates of the slope (\({\text{m}}\))
  • \(i\) is the index (Unitless)
  • \({\boldsymbol{y}_{\text{slip}}}\) is the \(y\)-coordinates of the slip surface (\({\text{m}}\))
Sourcefredlund1977
RefByDD:slcHeight
RefnameDD:sliceHghtLeftDD
LabelHeights of the left side of slices
Symbol\({\boldsymbol{h}^{\text{L}}}\)
Units\({\text{m}}\)
Equation\[{\boldsymbol{h}^{\text{L}}}={\boldsymbol{y}_{\text{slope},i-1}}-{\boldsymbol{y}_{\text{slip},i-1}}\]
Description
  • \({\boldsymbol{h}^{\text{L}}}\) is the heights of the left side of slices (\({\text{m}}\))
  • \({\boldsymbol{y}_{\text{slope}}}\) is the \(y\)-coordinates of the slope (\({\text{m}}\))
  • \(i\) is the index (Unitless)
  • \({\boldsymbol{y}_{\text{slip}}}\) is the \(y\)-coordinates of the slip surface (\({\text{m}}\))
Sourcefredlund1977
RefByDD:slcHeight