Instance Models

This section transforms the problem defined in the problem description into one which is expressed in mathematical terms. It uses concrete symbols defined in the data definitions to replace the abstract symbols in the models identified in theoretical models and general definitions.

The goals GS:Predict-Water-Temperature, GS:Predict-PCM-Temperature, GS:Predict-Water-Energy, and GS:Predict-PCM-Energy are solved by IM:eBalanceOnWtr, IM:eBalanceOnPCM, IM:heatEInWtr, and IM:heatEInPCM. The solutions for IM:eBalanceOnWtr and IM:eBalanceOnPCM are coupled since the solutions for TW and TP depend on one another. IM:heatEInWtr can be solved once IM:eBalanceOnWtr has been solved. The solutions of IM:eBalanceOnPCM and IM:heatEInPCM are also coupled, since the temperature of the phase change material and the change in heat energy in the PCM depend on the phase change.

RefnameIM:eBalanceOnWtr
LabelEnergy balance on water to find the temperature of the water
InputmW, CW, hC, AP, hP, AC, TP, tfinal, TC, Tinit
OutputTW
Input ConstraintsTC>Tinit
Output Constraints
EquationdTWdt=1τW(TCTW(t)+η(TP(t)TW(t)))
Description
  • t is the time (s)
  • TW is the temperature of the water (C)
  • τW is the ODE parameter for water related to decay time (s)
  • TC is the temperature of the heating coil (C)
  • η is the ODE parameter related to decay rate (Unitless)
  • TP is the temperature of the phase change material (C)
Notes
Sourcekoothoor2013
RefByIM:eBalanceOnWtr, IM:eBalanceOnPCM, UC:No-Internal-Heat-Generation, FR:Output-Values, FR:Find-Mass, and FR:Calculate-Values

Detailed derivation of the energy balance on water:

To find the rate of change of TW, we look at the energy balance on water. The volume being considered is the volume of water in the tank VW, which has mass mW and specific heat capacity, CW. Heat transfer occurs in the water from the heating coil as qC (GD:htFluxWaterFromCoil) and from the water into the PCM as qP (GD:htFluxPCMFromWater), over areas AC and AP, respectively. The thermal flux is constant over AC, since the temperature of the heating coil is assumed to not vary along its length (A:Temp-Heating-Coil-Constant-over-Length), and the thermal flux is constant over AP, since the temperature of the PCM is the same throughout its volume (A:Temp-PCM-Constant-Across-Volume) and the water is fully mixed (A:Constant-Water-Temp-Across-Tank). No heat transfer occurs to the outside of the tank, since it has been assumed to be perfectly insulated (A:Perfect-Insulation-Tank). Since the assumption is made that no internal heat is generated (A:No-Internal-Heat-Generation-By-Water-PCM), g=0. Therefore, the equation for GD:rocTempSimp can be written as:

mWCWdTWdt=qCACqPAP

Using GD:htFluxWaterFromCoil for qC and GD:htFluxPCMFromWater for qP, this can be written as:

mWCWdTWdt=hCAC(TCTW)hPAP(TWTP)

Dividing Equation (2) by mWCW, we obtain:

dTWdt=hCACmWCW(TCTW)hPAPmWCW(TWTP)

Factoring the negative sign out of the second term of the right-hand side (RHS) of Equation (3) and multiplying it by hC AC / hC AC yields:

dTWdt=hCACmWCW(TCTW)+hCAChCAChPAPmWCW(TPTW)

Rearranging this equation gives us:

dTWdt=hCACmWCW(TCTW)+hPAPhCAChCACmWCW(TPTW)

By substituting τW (from DD:balanceDecayRate) and η (from DD:balanceDecayTime), this can be written as:

dTWdt=1τW(TCTW)+ητW(TPTW)

Finally, factoring out 1τW, we are left with the governing ODE for IM:eBalanceOnWtr:

dTWdt=1τW(TCTW+η(TPTW))

RefnameIM:eBalanceOnPCM
LabelEnergy Balance on PCM to find temperature of PCM
InputTmeltP, tfinal, Tinit, AP, hP, mP, CPS, CPL
OutputTP
Input ConstraintsTmeltP>Tinit
Output Constraints
EquationdTPdt={1τPS(TW(t)TP(t)),TP<TmeltP1τPL(TW(t)TP(t)),TP>TmeltP0,TP=TmeltP0<ϕ<1
Description
  • t is the time (s)
  • TP is the temperature of the phase change material (C)
  • τPS is the ODE parameter for solid PCM (s)
  • TW is the temperature of the water (C)
  • τPL is the ODE parameter for liquid PCM (s)
  • TmeltP is the melting point temperature for PCM (C)
  • ϕ is the melt fraction (Unitless)
Notes
  • TW is defined by IM:eBalanceOnWtr.
  • The input constraint TinitTmeltP comes from A:PCM-Initially-Solid.
  • The temperature remains constant at TmeltP, even with the heating (or cooling), until the phase change has occurred for all of the material; that is as long as 0<ϕ<1. ϕ (from DD:meltFrac) is determined as part of the heat energy in the PCM, as given in (IM:heatEInPCM).
  • τPS is calculated in DD:balanceSolidPCM.
  • τPL is calculated in DD:balanceLiquidPCM.
  • The initial conditions for the ODE are TW(0)=TP(0)=Tinit following A:Same-Initial-Temp-Water-PCM.
Sourcekoothoor2013
RefByIM:eBalanceOnWtr, UC:No-Internal-Heat-Generation, UC:No-Gaseous-State, FR:Output-Values, FR:Find-Mass, FR:Calculate-Values, FR:Calculate-PCM-Melt-End-Time, and FR:Calculate-PCM-Melt-Begin-Time

Detailed derivation of the energy balance on the PCM during sensible heating phase:

To find the rate of change of TP, we look at the energy balance on the PCM. The volume being considered is the volume of PCM (VP). The derivation that follows is initially for the solid PCM. The mass of phase change material is mP and the specific heat capacity of PCM as a solid is CPS. The heat flux into the PCM from water is qP (GD:htFluxPCMFromWater) over phase change material surface area AP. The thermal flux is constant over AP, since the temperature of the PCM is the same throughout its volume (A:Temp-PCM-Constant-Across-Volume) and the water is fully mixed (A:Constant-Water-Temp-Across-Tank). There is no heat flux output from the PCM. Assuming no volumetric heat generation per unit volume (A:No-Internal-Heat-Generation-By-Water-PCM), g=0, the equation for GD:rocTempSimp can be written as:

mPCPSdTPdt=qPAP

Using GD:htFluxPCMFromWater for qP, this equation can be written as:

mPCPSdTPdt=hPAP(TWTP)

Dividing by mP CPS we obtain:

dTPdt=hPAPmPCPS(TWTP)

By substituting τPS (from DD:balanceSolidPCM), this can be written as:

dTPdt=1τPS(TWTP)

Equation (4) applies for the solid PCM. In the case where all of the PCM is melted, the same derivation applies, except that CPS is replaced by CPL, and thus τPS is replaced by τPL. Although a small change in surface area would be expected with melting, this is not included, since the volume change of the PCM with melting is assumed to be negligible (A:Volume-Change-Melting-PCM-Negligible).

In the case where TP=TmeltP and not all of the PCM is melted, the temperature of the phase change material does not change. Therefore, d TP / d t = 0.

This derivation does not consider the boiling of the PCM, as the PCM is assumed to either be in a solid state or a liquid state (A:No-Gaseous-State-PCM).

RefnameIM:heatEInWtr
LabelHeat energy in the water
InputTinit, mW, CW, mW
OutputEW
Input Constraints
Output Constraints
EquationEW(t)=CWmW(TW(t)Tinit)
Description
  • EW is the change in heat energy in the water (J)
  • t is the time (s)
  • CW is the specific heat capacity of water (JkgC)
  • mW is the mass of water (kg)
  • TW is the temperature of the water (C)
  • Tinit is the initial temperature (C)
Notes
  • The above equation is derived using TM:sensHtE.
  • The change in temperature is the difference between the temperature at time t (s), TW and the initial temperature, Tinit (C).
  • This equation applies as long as 0<TW<100C (A:Water-Always-Liquid, A:Atmospheric-Pressure-Tank).
Sourcekoothoor2013
RefByFR:Output-Values, FR:Find-Mass, and FR:Calculate-Values
RefnameIM:heatEInPCM
LabelHeat energy in the PCM
InputTmeltP, tfinal, Tinit, AP, hP, mP, CPS, CPL, TP, Hf, tmeltinit
OutputEP
Input ConstraintsTmeltP>Tinit
Output Constraints
EquationEP={CPSmP(TP(t)Tinit),TP<TmeltPEPmeltinit+HfmP+CPLmP(TP(t)TmeltP),TP>TmeltPEPmeltinit+QP(t),TP=TmeltP0<ϕ<1
Description
  • EP is the change in heat energy in the PCM (J)
  • CPS is the specific heat capacity of PCM as a solid (JkgC)
  • mP is the mass of phase change material (kg)
  • TP is the temperature of the phase change material (C)
  • t is the time (s)
  • Tinit is the initial temperature (C)
  • EPmeltinit is the change in heat energy in the PCM at the instant when melting begins (J)
  • Hf is the specific latent heat of fusion (Jkg)
  • CPL is the specific heat capacity of PCM as a liquid (JkgC)
  • TmeltP is the melting point temperature for PCM (C)
  • QP is the latent heat energy added to PCM (J)
  • ϕ is the melt fraction (Unitless)
Notes
  • The above equation is derived using TM:sensHtE and TM:latentHtE.
  • EP for the solid PCM is found using TM:sensHtE for sensible heating, with the specific heat capacity of the solid PCM, CPS (JkgC) and the change in the PCM temperature from the initial temperature (C).
  • EP for the melted PCM (TP>EPmeltinit) is found using TM:sensHtE for sensible heat of the liquid PCM plus the energy when melting starts, plus the energy required to melt all of the PCM.
  • The energy required to melt all of the PCM is HfmP (J) (from DD:htFusion).
  • The change in temperature is TPTmeltP (C).
  • EP during melting of the PCM is found using the energy required at the instant melting of the PCM begins, EPmeltinit plus the latent heat energy added to the PCM, QP (J) since the time when melting began tmeltinit (s).
  • The heat energy for boiling of the PCM is not detailed, since the PCM is assumed to either be in a solid or liquid state (A:No-Gaseous-State-PCM) (A:PCM-Initially-Solid).
Sourcekoothoor2013
RefByIM:eBalanceOnPCM, UC:No-Gaseous-State, FR:Output-Values, FR:Find-Mass, and FR:Calculate-Values