Processing math: 1%

General Definitions

This section collects the laws and equations that will be used to build the instance models.

RefnameGD:velocityX1
LabelThe x-component of velocity of the first object
Unitsms
Equation{v_{\text{x}1}}={w_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right)
Description
  • {v_{\text{x}1}} is the horizontal velocity of the first object (\frac{\text{m}}{\text{s}})
  • {w_{1}} is the angular velocity of the first object (\frac{\text{rad}}{\text{s}})
  • {L_{1}} is the length of the first rod ({\text{m}})
  • {θ_{1}} is the angle of the first rod ({\text{rad}})
Source
RefBy

Detailed derivation of the x-component of velocity:

At a given point in time, velocity is defined in DD:positionGDD

\boldsymbol{v}\text{(}t\text{)}=\frac{\,d\boldsymbol{p}\text{(}t\text{)}}{\,dt}

We also know the horizontal position that is defined in DD:positionXDD1

{p_{\text{x}1}}={L_{1}}\,\sin\left({θ_{1}}\right)

Applying this,

{v_{\text{x}1}}=\frac{\,d{L_{1}}\,\sin\left({θ_{1}}\right)}{\,dt}

{L_{1}} is constant with respect to time, so

{v_{\text{x}1}}={L_{1}}\,\frac{\,d\sin\left({θ_{1}}\right)}{\,dt}

Therefore, using the chain rule,

{v_{\text{x}1}}={w_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right)

RefnameGD:velocityY1
LabelThe y-component of velocity of the first object
Units\frac{\text{m}}{\text{s}}
Equation{v_{\text{y}1}}={w_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right)
Description
  • {v_{\text{y}1}} is the vertical velocity of the first object (\frac{\text{m}}{\text{s}})
  • {w_{1}} is the angular velocity of the first object (\frac{\text{rad}}{\text{s}})
  • {L_{1}} is the length of the first rod ({\text{m}})
  • {θ_{1}} is the angle of the first rod ({\text{rad}})
Source
RefBy

Detailed derivation of the y-component of velocity:

At a given point in time, velocity is defined in DD:positionGDD

\boldsymbol{v}\text{(}t\text{)}=\frac{\,d\boldsymbol{p}\text{(}t\text{)}}{\,dt}

We also know the vertical position that is defined in DD:positionYDD1

{p_{\text{y}1}}=-{L_{1}}\,\cos\left({θ_{1}}\right)

Applying this,

{v_{\text{y}1}}=-\left(\frac{\,d{L_{1}}\,\cos\left({θ_{1}}\right)}{\,dt}\right)

{L_{1}} is constant with respect to time, so

{v_{\text{y}1}}=-{L_{1}}\,\frac{\,d\cos\left({θ_{1}}\right)}{\,dt}

Therefore, using the chain rule,

{v_{\text{y}1}}={w_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right)

RefnameGD:velocityX2
LabelThe x-component of velocity of the second object
Units\frac{\text{m}}{\text{s}}
Equation{v_{\text{x}2}}={v_{\text{x}1}}+{w_{2}}\,{L_{2}}\,\cos\left({θ_{2}}\right)
Description
  • {v_{\text{x}2}} is the horizontal velocity of the second object (\frac{\text{m}}{\text{s}})
  • {v_{\text{x}1}} is the horizontal velocity of the first object (\frac{\text{m}}{\text{s}})
  • {w_{2}} is the angular velocity of the second object (\frac{\text{rad}}{\text{s}})
  • {L_{2}} is the length of the second rod ({\text{m}})
  • {θ_{2}} is the angle of the second rod ({\text{rad}})
Source
RefBy

Detailed derivation of the x-component of velocity:

At a given point in time, velocity is defined in DD:positionGDD

\boldsymbol{v}\text{(}t\text{)}=\frac{\,d\boldsymbol{p}\text{(}t\text{)}}{\,dt}

We also know the horizontal position that is defined in DD:positionXDD2

{p_{\text{x}2}}={p_{\text{x}1}}+{L_{2}}\,\sin\left({θ_{2}}\right)

Applying this,

{v_{\text{x}2}}=\frac{\,d{p_{\text{x}1}}+{L_{2}}\,\sin\left({θ_{2}}\right)}{\,dt}

{L_{1}} is constant with respect to time, so

{v_{\text{x}2}}={v_{\text{x}1}}+{w_{2}}\,{L_{2}}\,\cos\left({θ_{2}}\right)

RefnameGD:velocityY2
LabelThe y-component of velocity of the second object
Units\frac{\text{m}}{\text{s}}
Equation{v_{\text{y}2}}={v_{\text{y}1}}+{w_{2}}\,{L_{2}}\,\sin\left({θ_{2}}\right)
Description
  • {v_{\text{y}2}} is the vertical velocity of the second object (\frac{\text{m}}{\text{s}})
  • {v_{\text{y}1}} is the vertical velocity of the first object (\frac{\text{m}}{\text{s}})
  • {w_{2}} is the angular velocity of the second object (\frac{\text{rad}}{\text{s}})
  • {L_{2}} is the length of the second rod ({\text{m}})
  • {θ_{2}} is the angle of the second rod ({\text{rad}})
Source
RefBy

Detailed derivation of the y-component of velocity:

At a given point in time, velocity is defined in DD:positionGDD

\boldsymbol{v}\text{(}t\text{)}=\frac{\,d\boldsymbol{p}\text{(}t\text{)}}{\,dt}

We also know the vertical position that is defined in DD:positionYDD2

{p_{\text{y}2}}={p_{\text{y}1}}-{L_{2}}\,\cos\left({θ_{2}}\right)

Applying this,

{v_{\text{y}2}}=-\left(\frac{\,d{p_{\text{y}1}}-{L_{2}}\,\cos\left({θ_{2}}\right)}{\,dt}\right)

Therefore, using the chain rule,

{v_{\text{y}2}}={v_{\text{y}1}}+{w_{2}}\,{L_{2}}\,\sin\left({θ_{2}}\right)

RefnameGD:accelerationX1
LabelThe x-component of acceleration of the first object
Units\frac{\text{m}}{\text{s}^{2}}
Equation{a_{\text{x}1}}=-{w_{1}}^{2}\,{L_{1}}\,\sin\left({θ_{1}}\right)+{α_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right)
Description
  • {a_{\text{x}1}} is the horizontal acceleration of the first object (\frac{\text{m}}{\text{s}^{2}})
  • {w_{1}} is the angular velocity of the first object (\frac{\text{rad}}{\text{s}})
  • {L_{1}} is the length of the first rod ({\text{m}})
  • {θ_{1}} is the angle of the first rod ({\text{rad}})
  • {α_{1}} is the angular acceleration of the first object (\frac{\text{rad}}{\text{s}^{2}})
Source
RefByIM:calOfAngle2

Detailed derivation of the x-component of acceleration:

Our acceleration is:

\boldsymbol{a}\text{(}t\text{)}=\frac{\,d\boldsymbol{v}\text{(}t\text{)}}{\,dt}

Earlier, we found the horizontal velocity to be

{v_{\text{x}1}}={w_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right)

Applying this to our equation for acceleration

{a_{\text{x}1}}=\frac{\,d{w_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right)}{\,dt}

By the product and chain rules, we find

{a_{\text{x}1}}=\frac{\,d{w_{1}}}{\,dt}\,{L_{1}}\,\cos\left({θ_{1}}\right)-{w_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right)\,\frac{\,d{θ_{1}}}{\,dt}

Simplifying,

{a_{\text{x}1}}=-{w_{1}}^{2}\,{L_{1}}\,\sin\left({θ_{1}}\right)+{α_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right)

RefnameGD:accelerationY1
LabelThe y-component of acceleration of the first object
Units\frac{\text{m}}{\text{s}^{2}}
Equation{a_{\text{y}1}}={w_{1}}^{2}\,{L_{1}}\,\cos\left({θ_{1}}\right)+{α_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right)
Description
  • {a_{\text{y}1}} is the vertical acceleration of the first object (\frac{\text{m}}{\text{s}^{2}})
  • {w_{1}} is the angular velocity of the first object (\frac{\text{rad}}{\text{s}})
  • {L_{1}} is the length of the first rod ({\text{m}})
  • {θ_{1}} is the angle of the first rod ({\text{rad}})
  • {α_{1}} is the angular acceleration of the first object (\frac{\text{rad}}{\text{s}^{2}})
Source
RefByIM:calOfAngle2

Detailed derivation of the y-component of acceleration:

Our acceleration is:

\boldsymbol{a}\text{(}t\text{)}=\frac{\,d\boldsymbol{v}\text{(}t\text{)}}{\,dt}

Earlier, we found the vertical velocity to be

{v_{\text{y}1}}={w_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right)

Applying this to our equation for acceleration

{a_{\text{y}1}}=\frac{\,d{w_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right)}{\,dt}

By the product and chain rules, we find

{a_{\text{y}1}}=\frac{\,d{w_{1}}}{\,dt}\,{L_{1}}\,\sin\left({θ_{1}}\right)+{w_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right)\,\frac{\,d{θ_{1}}}{\,dt}

Simplifying,

{a_{\text{y}1}}={w_{1}}^{2}\,{L_{1}}\,\cos\left({θ_{1}}\right)+{α_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right)

RefnameGD:accelerationX2
LabelThe x-component of acceleration of the second object
Units\frac{\text{m}}{\text{s}^{2}}
Equation{a_{\text{x}2}}={a_{\text{x}1}}-{w_{2}}^{2}\,{L_{2}}\,\sin\left({θ_{2}}\right)+{α_{2}}\,{L_{2}}\,\cos\left({θ_{2}}\right)
Description
  • {a_{\text{x}2}} is the horizontal acceleration of the second object (\frac{\text{m}}{\text{s}^{2}})
  • {a_{\text{x}1}} is the horizontal acceleration of the first object (\frac{\text{m}}{\text{s}^{2}})
  • {w_{2}} is the angular velocity of the second object (\frac{\text{rad}}{\text{s}})
  • {L_{2}} is the length of the second rod ({\text{m}})
  • {θ_{2}} is the angle of the second rod ({\text{rad}})
  • {α_{2}} is the angular acceleration of the second object (\frac{\text{rad}}{\text{s}^{2}})
Source
RefByIM:calOfAngle2

Detailed derivation of the x-component of acceleration:

Our acceleration is:

\boldsymbol{a}\text{(}t\text{)}=\frac{\,d\boldsymbol{v}\text{(}t\text{)}}{\,dt}

Earlier, we found the horizontal velocity to be

{v_{\text{x}2}}={v_{\text{x}1}}+{w_{2}}\,{L_{2}}\,\cos\left({θ_{2}}\right)

Applying this to our equation for acceleration

{a_{\text{x}2}}=\frac{\,d{v_{\text{x}1}}+{w_{2}}\,{L_{2}}\,\cos\left({θ_{2}}\right)}{\,dt}

By the product and chain rules, we find

{a_{\text{x}2}}={a_{\text{x}1}}-{w_{2}}^{2}\,{L_{2}}\,\sin\left({θ_{2}}\right)+{α_{2}}\,{L_{2}}\,\cos\left({θ_{2}}\right)

RefnameGD:accelerationY2
LabelThe y-component of acceleration of the second object
Units\frac{\text{m}}{\text{s}^{2}}
Equation{a_{\text{y}2}}={a_{\text{y}1}}+{w_{2}}^{2}\,{L_{2}}\,\cos\left({θ_{2}}\right)+{α_{2}}\,{L_{2}}\,\sin\left({θ_{2}}\right)
Description
  • {a_{\text{y}2}} is the vertical acceleration of the second object (\frac{\text{m}}{\text{s}^{2}})
  • {a_{\text{y}1}} is the vertical acceleration of the first object (\frac{\text{m}}{\text{s}^{2}})
  • {w_{2}} is the angular velocity of the second object (\frac{\text{rad}}{\text{s}})
  • {L_{2}} is the length of the second rod ({\text{m}})
  • {θ_{2}} is the angle of the second rod ({\text{rad}})
  • {α_{2}} is the angular acceleration of the second object (\frac{\text{rad}}{\text{s}^{2}})
Source
RefByIM:calOfAngle2

Detailed derivation of the y-component of acceleration:

Our acceleration is:

\boldsymbol{a}\text{(}t\text{)}=\frac{\,d\boldsymbol{v}\text{(}t\text{)}}{\,dt}

Earlier, we found the horizontal velocity to be

{v_{\text{y}2}}={v_{\text{y}1}}+{w_{2}}\,{L_{2}}\,\sin\left({θ_{2}}\right)

Applying this to our equation for acceleration

{a_{\text{y}2}}=\frac{\,d{v_{\text{y}1}}+{w_{2}}\,{L_{2}}\,\sin\left({θ_{2}}\right)}{\,dt}

By the product and chain rules, we find

{a_{\text{y}2}}={a_{\text{y}1}}+{w_{2}}^{2}\,{L_{2}}\,\cos\left({θ_{2}}\right)+{α_{2}}\,{L_{2}}\,\sin\left({θ_{2}}\right)

RefnameGD:xForce1
LabelHorizontal force on the first object
Units{\text{N}}
Equation\boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}=-{\boldsymbol{T}_{1}}\,\sin\left({θ_{1}}\right)+{\boldsymbol{T}_{2}}\,\sin\left({θ_{2}}\right)
Description
  • \boldsymbol{F} is the force ({\text{N}})
  • m is the mass ({\text{kg}})
  • \boldsymbol{a}\text{(}t\text{)} is the acceleration (\frac{\text{m}}{\text{s}^{2}})
  • {\boldsymbol{T}_{1}} is the tension of the first object ({\text{N}})
  • {θ_{1}} is the angle of the first rod ({\text{rad}})
  • {\boldsymbol{T}_{2}} is the tension of the second object ({\text{N}})
  • {θ_{2}} is the angle of the second rod ({\text{rad}})
Source
RefByIM:calOfAngle2

Detailed derivation of force on the first object:

\boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}=-{\boldsymbol{T}_{1}}\,\sin\left({θ_{1}}\right)+{\boldsymbol{T}_{2}}\,\sin\left({θ_{2}}\right)

RefnameGD:yForce1
LabelVertical force on the first object
Units{\text{N}}
Equation\boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}={\boldsymbol{T}_{1}}\,\cos\left({θ_{1}}\right)-{\boldsymbol{T}_{2}}\,\cos\left({θ_{2}}\right)-{m_{1}}\,\boldsymbol{g}
Description
  • \boldsymbol{F} is the force ({\text{N}})
  • m is the mass ({\text{kg}})
  • \boldsymbol{a}\text{(}t\text{)} is the acceleration (\frac{\text{m}}{\text{s}^{2}})
  • {\boldsymbol{T}_{1}} is the tension of the first object ({\text{N}})
  • {θ_{1}} is the angle of the first rod ({\text{rad}})
  • {\boldsymbol{T}_{2}} is the tension of the second object ({\text{N}})
  • {θ_{2}} is the angle of the second rod ({\text{rad}})
  • {m_{1}} is the mass of the first object ({\text{kg}})
  • \boldsymbol{g} is the gravitational acceleration (\frac{\text{m}}{\text{s}^{2}})
Source
RefByIM:calOfAngle2

Detailed derivation of force on the first object:

\boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}={\boldsymbol{T}_{1}}\,\cos\left({θ_{1}}\right)-{\boldsymbol{T}_{2}}\,\cos\left({θ_{2}}\right)-{m_{1}}\,\boldsymbol{g}

RefnameGD:xForce2
LabelHorizontal force on the second object
Units{\text{N}}
Equation\boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}=-{\boldsymbol{T}_{2}}\,\sin\left({θ_{2}}\right)
Description
  • \boldsymbol{F} is the force ({\text{N}})
  • m is the mass ({\text{kg}})
  • \boldsymbol{a}\text{(}t\text{)} is the acceleration (\frac{\text{m}}{\text{s}^{2}})
  • {\boldsymbol{T}_{2}} is the tension of the second object ({\text{N}})
  • {θ_{2}} is the angle of the second rod ({\text{rad}})
Source
RefByIM:calOfAngle2

Detailed derivation of force on the second object:

\boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}=-{\boldsymbol{T}_{2}}\,\sin\left({θ_{2}}\right)

RefnameGD:yForce2
LabelVertical force on the second object
Units{\text{N}}
Equation\boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}={\boldsymbol{T}_{2}}\,\cos\left({θ_{2}}\right)-{m_{2}}\,\boldsymbol{g}
Description
  • \boldsymbol{F} is the force ({\text{N}})
  • m is the mass ({\text{kg}})
  • \boldsymbol{a}\text{(}t\text{)} is the acceleration (\frac{\text{m}}{\text{s}^{2}})
  • {\boldsymbol{T}_{2}} is the tension of the second object ({\text{N}})
  • {θ_{2}} is the angle of the second rod ({\text{rad}})
  • {m_{2}} is the mass of the second object ({\text{kg}})
  • \boldsymbol{g} is the gravitational acceleration (\frac{\text{m}}{\text{s}^{2}})
Source
RefByIM:calOfAngle2

Detailed derivation of force on the second object:

\boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}={\boldsymbol{T}_{2}}\,\cos\left({θ_{2}}\right)-{m_{2}}\,\boldsymbol{g}