General Definitions
This section collects the laws and equations that will be used to build the instance models.
Refname | GD:velocityX1 |
---|---|
Label | The x-component of velocity of the first object |
Units | ms |
Equation | {v_{\text{x}1}}={w_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right) |
Description |
|
Source | – |
RefBy |
Detailed derivation of the x-component of velocity:
At a given point in time, velocity is defined in DD:positionGDD
\boldsymbol{v}\text{(}t\text{)}=\frac{\,d\boldsymbol{p}\text{(}t\text{)}}{\,dt}
We also know the horizontal position that is defined in DD:positionXDD1
{p_{\text{x}1}}={L_{1}}\,\sin\left({θ_{1}}\right)
Applying this,
{v_{\text{x}1}}=\frac{\,d{L_{1}}\,\sin\left({θ_{1}}\right)}{\,dt}
{L_{1}} is constant with respect to time, so
{v_{\text{x}1}}={L_{1}}\,\frac{\,d\sin\left({θ_{1}}\right)}{\,dt}
Therefore, using the chain rule,
{v_{\text{x}1}}={w_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right)
Refname | GD:velocityY1 |
---|---|
Label | The y-component of velocity of the first object |
Units | \frac{\text{m}}{\text{s}} |
Equation | {v_{\text{y}1}}={w_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right) |
Description |
|
Source | – |
RefBy |
Detailed derivation of the y-component of velocity:
At a given point in time, velocity is defined in DD:positionGDD
\boldsymbol{v}\text{(}t\text{)}=\frac{\,d\boldsymbol{p}\text{(}t\text{)}}{\,dt}
We also know the vertical position that is defined in DD:positionYDD1
{p_{\text{y}1}}=-{L_{1}}\,\cos\left({θ_{1}}\right)
Applying this,
{v_{\text{y}1}}=-\left(\frac{\,d{L_{1}}\,\cos\left({θ_{1}}\right)}{\,dt}\right)
{L_{1}} is constant with respect to time, so
{v_{\text{y}1}}=-{L_{1}}\,\frac{\,d\cos\left({θ_{1}}\right)}{\,dt}
Therefore, using the chain rule,
{v_{\text{y}1}}={w_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right)
Refname | GD:velocityX2 |
---|---|
Label | The x-component of velocity of the second object |
Units | \frac{\text{m}}{\text{s}} |
Equation | {v_{\text{x}2}}={v_{\text{x}1}}+{w_{2}}\,{L_{2}}\,\cos\left({θ_{2}}\right) |
Description |
|
Source | – |
RefBy |
Detailed derivation of the x-component of velocity:
At a given point in time, velocity is defined in DD:positionGDD
\boldsymbol{v}\text{(}t\text{)}=\frac{\,d\boldsymbol{p}\text{(}t\text{)}}{\,dt}
We also know the horizontal position that is defined in DD:positionXDD2
{p_{\text{x}2}}={p_{\text{x}1}}+{L_{2}}\,\sin\left({θ_{2}}\right)
Applying this,
{v_{\text{x}2}}=\frac{\,d{p_{\text{x}1}}+{L_{2}}\,\sin\left({θ_{2}}\right)}{\,dt}
{L_{1}} is constant with respect to time, so
{v_{\text{x}2}}={v_{\text{x}1}}+{w_{2}}\,{L_{2}}\,\cos\left({θ_{2}}\right)
Refname | GD:velocityY2 |
---|---|
Label | The y-component of velocity of the second object |
Units | \frac{\text{m}}{\text{s}} |
Equation | {v_{\text{y}2}}={v_{\text{y}1}}+{w_{2}}\,{L_{2}}\,\sin\left({θ_{2}}\right) |
Description |
|
Source | – |
RefBy |
Detailed derivation of the y-component of velocity:
At a given point in time, velocity is defined in DD:positionGDD
\boldsymbol{v}\text{(}t\text{)}=\frac{\,d\boldsymbol{p}\text{(}t\text{)}}{\,dt}
We also know the vertical position that is defined in DD:positionYDD2
{p_{\text{y}2}}={p_{\text{y}1}}-{L_{2}}\,\cos\left({θ_{2}}\right)
Applying this,
{v_{\text{y}2}}=-\left(\frac{\,d{p_{\text{y}1}}-{L_{2}}\,\cos\left({θ_{2}}\right)}{\,dt}\right)
Therefore, using the chain rule,
{v_{\text{y}2}}={v_{\text{y}1}}+{w_{2}}\,{L_{2}}\,\sin\left({θ_{2}}\right)
Refname | GD:accelerationX1 |
---|---|
Label | The x-component of acceleration of the first object |
Units | \frac{\text{m}}{\text{s}^{2}} |
Equation | {a_{\text{x}1}}=-{w_{1}}^{2}\,{L_{1}}\,\sin\left({θ_{1}}\right)+{α_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right) |
Description |
|
Source | – |
RefBy | IM:calOfAngle2 |
Detailed derivation of the x-component of acceleration:
Our acceleration is:
\boldsymbol{a}\text{(}t\text{)}=\frac{\,d\boldsymbol{v}\text{(}t\text{)}}{\,dt}
Earlier, we found the horizontal velocity to be
{v_{\text{x}1}}={w_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right)
Applying this to our equation for acceleration
{a_{\text{x}1}}=\frac{\,d{w_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right)}{\,dt}
By the product and chain rules, we find
{a_{\text{x}1}}=\frac{\,d{w_{1}}}{\,dt}\,{L_{1}}\,\cos\left({θ_{1}}\right)-{w_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right)\,\frac{\,d{θ_{1}}}{\,dt}
Simplifying,
{a_{\text{x}1}}=-{w_{1}}^{2}\,{L_{1}}\,\sin\left({θ_{1}}\right)+{α_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right)
Refname | GD:accelerationY1 |
---|---|
Label | The y-component of acceleration of the first object |
Units | \frac{\text{m}}{\text{s}^{2}} |
Equation | {a_{\text{y}1}}={w_{1}}^{2}\,{L_{1}}\,\cos\left({θ_{1}}\right)+{α_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right) |
Description |
|
Source | – |
RefBy | IM:calOfAngle2 |
Detailed derivation of the y-component of acceleration:
Our acceleration is:
\boldsymbol{a}\text{(}t\text{)}=\frac{\,d\boldsymbol{v}\text{(}t\text{)}}{\,dt}
Earlier, we found the vertical velocity to be
{v_{\text{y}1}}={w_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right)
Applying this to our equation for acceleration
{a_{\text{y}1}}=\frac{\,d{w_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right)}{\,dt}
By the product and chain rules, we find
{a_{\text{y}1}}=\frac{\,d{w_{1}}}{\,dt}\,{L_{1}}\,\sin\left({θ_{1}}\right)+{w_{1}}\,{L_{1}}\,\cos\left({θ_{1}}\right)\,\frac{\,d{θ_{1}}}{\,dt}
Simplifying,
{a_{\text{y}1}}={w_{1}}^{2}\,{L_{1}}\,\cos\left({θ_{1}}\right)+{α_{1}}\,{L_{1}}\,\sin\left({θ_{1}}\right)
Refname | GD:accelerationX2 |
---|---|
Label | The x-component of acceleration of the second object |
Units | \frac{\text{m}}{\text{s}^{2}} |
Equation | {a_{\text{x}2}}={a_{\text{x}1}}-{w_{2}}^{2}\,{L_{2}}\,\sin\left({θ_{2}}\right)+{α_{2}}\,{L_{2}}\,\cos\left({θ_{2}}\right) |
Description |
|
Source | – |
RefBy | IM:calOfAngle2 |
Detailed derivation of the x-component of acceleration:
Our acceleration is:
\boldsymbol{a}\text{(}t\text{)}=\frac{\,d\boldsymbol{v}\text{(}t\text{)}}{\,dt}
Earlier, we found the horizontal velocity to be
{v_{\text{x}2}}={v_{\text{x}1}}+{w_{2}}\,{L_{2}}\,\cos\left({θ_{2}}\right)
Applying this to our equation for acceleration
{a_{\text{x}2}}=\frac{\,d{v_{\text{x}1}}+{w_{2}}\,{L_{2}}\,\cos\left({θ_{2}}\right)}{\,dt}
By the product and chain rules, we find
{a_{\text{x}2}}={a_{\text{x}1}}-{w_{2}}^{2}\,{L_{2}}\,\sin\left({θ_{2}}\right)+{α_{2}}\,{L_{2}}\,\cos\left({θ_{2}}\right)
Refname | GD:accelerationY2 |
---|---|
Label | The y-component of acceleration of the second object |
Units | \frac{\text{m}}{\text{s}^{2}} |
Equation | {a_{\text{y}2}}={a_{\text{y}1}}+{w_{2}}^{2}\,{L_{2}}\,\cos\left({θ_{2}}\right)+{α_{2}}\,{L_{2}}\,\sin\left({θ_{2}}\right) |
Description |
|
Source | – |
RefBy | IM:calOfAngle2 |
Detailed derivation of the y-component of acceleration:
Our acceleration is:
\boldsymbol{a}\text{(}t\text{)}=\frac{\,d\boldsymbol{v}\text{(}t\text{)}}{\,dt}
Earlier, we found the horizontal velocity to be
{v_{\text{y}2}}={v_{\text{y}1}}+{w_{2}}\,{L_{2}}\,\sin\left({θ_{2}}\right)
Applying this to our equation for acceleration
{a_{\text{y}2}}=\frac{\,d{v_{\text{y}1}}+{w_{2}}\,{L_{2}}\,\sin\left({θ_{2}}\right)}{\,dt}
By the product and chain rules, we find
{a_{\text{y}2}}={a_{\text{y}1}}+{w_{2}}^{2}\,{L_{2}}\,\cos\left({θ_{2}}\right)+{α_{2}}\,{L_{2}}\,\sin\left({θ_{2}}\right)
Refname | GD:xForce1 |
---|---|
Label | Horizontal force on the first object |
Units | {\text{N}} |
Equation | \boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}=-{\boldsymbol{T}_{1}}\,\sin\left({θ_{1}}\right)+{\boldsymbol{T}_{2}}\,\sin\left({θ_{2}}\right) |
Description |
|
Source | – |
RefBy | IM:calOfAngle2 |
Detailed derivation of force on the first object:
\boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}=-{\boldsymbol{T}_{1}}\,\sin\left({θ_{1}}\right)+{\boldsymbol{T}_{2}}\,\sin\left({θ_{2}}\right)
Refname | GD:yForce1 |
---|---|
Label | Vertical force on the first object |
Units | {\text{N}} |
Equation | \boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}={\boldsymbol{T}_{1}}\,\cos\left({θ_{1}}\right)-{\boldsymbol{T}_{2}}\,\cos\left({θ_{2}}\right)-{m_{1}}\,\boldsymbol{g} |
Description |
|
Source | – |
RefBy | IM:calOfAngle2 |
Detailed derivation of force on the first object:
\boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}={\boldsymbol{T}_{1}}\,\cos\left({θ_{1}}\right)-{\boldsymbol{T}_{2}}\,\cos\left({θ_{2}}\right)-{m_{1}}\,\boldsymbol{g}
Refname | GD:xForce2 |
---|---|
Label | Horizontal force on the second object |
Units | {\text{N}} |
Equation | \boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}=-{\boldsymbol{T}_{2}}\,\sin\left({θ_{2}}\right) |
Description |
|
Source | – |
RefBy | IM:calOfAngle2 |
Detailed derivation of force on the second object:
\boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}=-{\boldsymbol{T}_{2}}\,\sin\left({θ_{2}}\right)
Refname | GD:yForce2 |
---|---|
Label | Vertical force on the second object |
Units | {\text{N}} |
Equation | \boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}={\boldsymbol{T}_{2}}\,\cos\left({θ_{2}}\right)-{m_{2}}\,\boldsymbol{g} |
Description |
|
Source | – |
RefBy | IM:calOfAngle2 |
Detailed derivation of force on the second object:
\boldsymbol{F}=m \boldsymbol{a}\text{(}t\text{)}={\boldsymbol{T}_{2}}\,\cos\left({θ_{2}}\right)-{m_{2}}\,\boldsymbol{g}