This section focuses on the general equations and laws that DblPend is based on.
Refname TM:acceleration
Label Acceleration
Equation \[\boldsymbol{a}\text{(}t\text{)}=\frac{\,d\boldsymbol{v}\text{(}t\text{)}}{\,dt}\]
Description \(\boldsymbol{a}\text{(}t\text{)}\) is the acceleration (\(\frac{\text{m}}{\text{s}^{2}}\)) \(t\) is the time (\({\text{s}}\)) \(\boldsymbol{v}\text{(}t\text{)}\) is the velocity (\(\frac{\text{m}}{\text{s}}\))
Source accelerationWiki
RefBy
Refname TM:velocity
Label Velocity
Equation \[\boldsymbol{v}\text{(}t\text{)}=\frac{\,d\boldsymbol{p}\text{(}t\text{)}}{\,dt}\]
Description \(\boldsymbol{v}\text{(}t\text{)}\) is the velocity (\(\frac{\text{m}}{\text{s}}\)) \(t\) is the time (\({\text{s}}\)) \(\boldsymbol{p}\text{(}t\text{)}\) is the position (\({\text{m}}\))
Source velocityWiki
RefBy
Refname TM:NewtonSecLawMot
Label Newton’s second law of motion
Equation \[\boldsymbol{F}=m\,\boldsymbol{a}\text{(}t\text{)}\]
Description \(\boldsymbol{F}\) is the force (\({\text{N}}\)) \(m\) is the mass (\({\text{kg}}\)) \(\boldsymbol{a}\text{(}t\text{)}\) is the acceleration (\(\frac{\text{m}}{\text{s}^{2}}\))
Notes The net force \(\boldsymbol{F}\) on a body is proportional to the acceleration \(\boldsymbol{a}\text{(}t\text{)}\) of the body, where \(m\) denotes the mass of the body as the constant of proportionality.
Source –
RefBy