Data Definitions

This section collects and defines all the data needed to build the instance models.

RefnameDD:positionIX
Label\(x\)-component of initial position
Symbol\({{p_{\text{x}}}^{\text{i}}}\)
Units\({\text{m}}\)
Equation\[{{p_{\text{x}}}^{\text{i}}}={L_{\text{rod}}}\,\sin\left({θ_{i}}\right)\]
Description
  • \({{p_{\text{x}}}^{\text{i}}}\) is the \(x\)-component of initial position (\({\text{m}}\))
  • \({L_{\text{rod}}}\) is the length of the rod (\({\text{m}}\))
  • \({θ_{i}}\) is the initial pendulum angle (\({\text{rad}}\))
Notes
  • \({{p_{\text{x}}}^{\text{i}}}\) is the horizontal position
  • \({{p_{\text{x}}}^{\text{i}}}\) is shown in Fig:sglpend.
Source
RefBy
RefnameDD:positionIY
Label\(y\)-component of initial position
Symbol\({{p_{\text{y}}}^{\text{i}}}\)
Units\({\text{m}}\)
Equation\[{{p_{\text{y}}}^{\text{i}}}=-{L_{\text{rod}}}\,\cos\left({θ_{i}}\right)\]
Description
  • \({{p_{\text{y}}}^{\text{i}}}\) is the \(y\)-component of initial position (\({\text{m}}\))
  • \({L_{\text{rod}}}\) is the length of the rod (\({\text{m}}\))
  • \({θ_{i}}\) is the initial pendulum angle (\({\text{rad}}\))
Notes
  • \({{p_{\text{y}}}^{\text{i}}}\) is the vertical position
  • \({{p_{\text{y}}}^{\text{i}}}\) is shown in Fig:sglpend.
Source
RefBy
RefnameDD:frequencyDD
LabelFrequency
Symbol\(f\)
Units\({\text{Hz}}\)
Equation\[f=\frac{1}{T}\]
Description
  • \(f\) is the frequency (\({\text{Hz}}\))
  • \(T\) is the period (\({\text{s}}\))
Notes
  • \(f\) is the number of back and forth swings in one second
Source
RefByGD:periodPend, DD:periodSHMDD, and GD:angFrequencyGD
RefnameDD:angFrequencyDD
LabelAngular frequency
Symbol\(Ω\)
Units\({\text{s}}\)
Equation\[Ω=\frac{2\,π}{T}\]
Description
  • \(Ω\) is the angular frequency (\({\text{s}}\))
  • \(π\) is the ratio of circumference to diameter for any circle (Unitless)
  • \(T\) is the period (\({\text{s}}\))
Notes
Source
RefByGD:periodPend
RefnameDD:periodSHMDD
LabelPeriod
Symbol\(T\)
Units\({\text{s}}\)
Equation\[T=\frac{1}{f}\]
Description
  • \(T\) is the period (\({\text{s}}\))
  • \(f\) is the frequency (\({\text{Hz}}\))
Notes
Source
RefByGD:periodPend and DD:angFrequencyDD