General Definitions
This section collects the laws and equations that will be used to build the instance models.
Refname | GD:rocTempSimp |
---|---|
Label | Simplified rate of change of temperature |
Equation | \[m\,C\,\frac{\,dT}{\,dt}={q_{\text{in}}}\,{A_{\text{in}}}-{q_{\text{out}}}\,{A_{\text{out}}}+g\,V\] |
Description |
|
Source | – |
RefBy | GD:rocTempSimp and IM:eBalanceOnWtr |
Detailed derivation of simplified rate of change of temperature:
Integrating TM:consThermE over a volume (\(V\)), we have:
\[-\int_{V}{∇\cdot{}\boldsymbol{q}}\,dV+\int_{V}{g}\,dV=\int_{V}{ρ\,C\,\frac{\,\partial{}T}{\,\partial{}t}}\,dV\]
Applying Gauss’s Divergence Theorem to the first term over the surface \(S\) of the volume, with \(\boldsymbol{q}\) as the thermal flux vector for the surface and \(\boldsymbol{\hat{n}}\) as a unit outward normal vector for a surface:
\[-\int_{S}{\boldsymbol{q}\cdot{}\boldsymbol{\hat{n}}}\,dS+\int_{V}{g}\,dV=\int_{V}{ρ\,C\,\frac{\,\partial{}T}{\,\partial{}t}}\,dV\]
We consider an arbitrary volume. The volumetric heat generation per unit volume is assumed constant. Then Equation (1) can be written as:
\[{q_{\text{in}}}\,{A_{\text{in}}}-{q_{\text{out}}}\,{A_{\text{out}}}+g\,V=\int_{V}{ρ\,C\,\frac{\,\partial{}T}{\,\partial{}t}}\,dV\]
Where \({q_{\text{in}}}\), \({q_{\text{out}}}\), \({A_{\text{in}}}\), and \({A_{\text{out}}}\) are explained in GD:rocTempSimp. Assuming \(ρ\), \(C\), and \(T\) are constant over the volume, which is true in our case by A:Constant-Water-Temp-Across-Tank, A:Density-Water-Constant-over-Volume, and A:Specific-Heat-Energy-Constant-over-Volume, we have:
\[ρ\,C\,V\,\frac{\,dT}{\,dt}={q_{\text{in}}}\,{A_{\text{in}}}-{q_{\text{out}}}\,{A_{\text{out}}}+g\,V\]
Using the fact that \(ρ\)=\(m\)/\(V\), Equation (2) can be written as:
\[m\,C\,\frac{\,dT}{\,dt}={q_{\text{in}}}\,{A_{\text{in}}}-{q_{\text{out}}}\,{A_{\text{out}}}+g\,V\]
Refname | GD:htFluxWaterFromCoil |
---|---|
Label | Heat flux into the water from the coil |
Units | \(\frac{\text{W}}{\text{m}^{2}}\) |
Equation | \[{q_{\text{C}}}={h_{\text{C}}}\,\left({T_{\text{C}}}-{T_{\text{W}}}\left(t\right)\right)\] |
Description |
|
Notes |
|
Source | koothoor2013 |
RefBy | IM:eBalanceOnWtr |