General Definitions
This section collects the laws and equations that will be used to build the instance models.
Refname | GD:rocTempSimp |
---|---|
Label | Simplified rate of change of temperature |
Equation | mCdTdt=qinAin−qoutAout+gV |
Description |
|
Source | – |
RefBy | GD:rocTempSimp and IM:eBalanceOnWtr |
Detailed derivation of simplified rate of change of temperature:
Integrating TM:consThermE over a volume (V), we have:
-\int_{V}{∇\cdot{}\boldsymbol{q}}\,dV+\int_{V}{g}\,dV=\int_{V}{ρ\,C\,\frac{\,\partial{}T}{\,\partial{}t}}\,dV
Applying Gauss’s Divergence Theorem to the first term over the surface S of the volume, with \boldsymbol{q} as the thermal flux vector for the surface and \boldsymbol{\hat{n}} as a unit outward normal vector for a surface:
-\int_{S}{\boldsymbol{q}\cdot{}\boldsymbol{\hat{n}}}\,dS+\int_{V}{g}\,dV=\int_{V}{ρ\,C\,\frac{\,\partial{}T}{\,\partial{}t}}\,dV
We consider an arbitrary volume. The volumetric heat generation per unit volume is assumed constant. Then Equation (1) can be written as:
{q_{\text{in}}}\,{A_{\text{in}}}-{q_{\text{out}}}\,{A_{\text{out}}}+g\,V=\int_{V}{ρ\,C\,\frac{\,\partial{}T}{\,\partial{}t}}\,dV
Where {q_{\text{in}}}, {q_{\text{out}}}, {A_{\text{in}}}, and {A_{\text{out}}} are explained in GD:rocTempSimp. Assuming ρ, C, and T are constant over the volume, which is true in our case by A:Constant-Water-Temp-Across-Tank, A:Density-Water-Constant-over-Volume, and A:Specific-Heat-Energy-Constant-over-Volume, we have:
ρ\,C\,V\,\frac{\,dT}{\,dt}={q_{\text{in}}}\,{A_{\text{in}}}-{q_{\text{out}}}\,{A_{\text{out}}}+g\,V
Using the fact that ρ=m/V, Equation (2) can be written as:
m\,C\,\frac{\,dT}{\,dt}={q_{\text{in}}}\,{A_{\text{in}}}-{q_{\text{out}}}\,{A_{\text{out}}}+g\,V
Refname | GD:htFluxWaterFromCoil |
---|---|
Label | Heat flux into the water from the coil |
Units | \frac{\text{W}}{\text{m}^{2}} |
Equation | {q_{\text{C}}}={h_{\text{C}}}\,\left({T_{\text{C}}}-{T_{\text{W}}}\left(t\right)\right) |
Description |
|
Notes |
|
Source | koothoor2013 |
RefBy | IM:eBalanceOnWtr |