Instance Models

This section transforms the problem defined in the problem description into one which is expressed in mathematical terms. It uses concrete symbols defined in the data definitions to replace the abstract symbols in the models identified in theoretical models and general definitions.

The goal GS:Predict-Glass-Withstands-Explosion is met by IM:isSafePb, IM:isSafeLR.

RefnameIM:riskFun
LabelRisk of failure
Input\(E\), \(\mathit{LDF}\), \(J\), \(k\), \(m\), \(h\), \(a\), \(b\)
Output\(B\)
Input Constraints\[a\gt{}0\]\[0\lt{}b\leq{}a\]
Output Constraints
Equation\[B=\frac{k}{\left(a\,b\right)^{m-1}}\,\left(E\,h^{2}\right)^{m}\,\mathit{LDF}\,e^{J}\]
Description
  • \(B\) is the risk of failure (Unitless)
  • \(k\) is the surface flaw parameter (\(\frac{\text{m}^{12}}{\text{N}^{7}}\))
  • \(a\) is the plate length (long dimension) (\({\text{m}}\))
  • \(b\) is the plate width (short dimension) (\({\text{m}}\))
  • \(m\) is the surface flaw parameter (\(\frac{\text{m}^{12}}{\text{N}^{7}}\))
  • \(E\) is the modulus of elasticity of glass (\({\text{Pa}}\))
  • \(h\) is the minimum thickness (\({\text{m}}\))
  • \(\mathit{LDF}\) is the load duration factor (Unitless)
  • \(J\) is the stress distribution factor (Function) (Unitless)
Notes
  • \(a\) and \(b\) are the dimensions of the plate, where (\(a\geq{}b\)).
  • \(h\) is defined in DD:minThick and is based on the nominal thicknesses.
  • \(\mathit{LDF}\) is defined in DD:loadDurFactor.
  • \(J\) is defined in IM:stressDistFac.
Sourceastm2009, beasonEtAl1998 (Eqs. 4-5), and campidelli (Eq. 14)
RefByIM:probOfBreak
RefnameIM:stressDistFac
LabelStress distribution factor (Function)
Input\(\mathit{AR}\), \(\hat{q}\)
Output\(J\)
Input Constraints\[\mathit{AR}\geq{}1\]
Output Constraints\[{J_{\text{min}}}\leq{}J\leq{}{J_{\text{max}}}\]
Equation\[J=\mathit{interpZ}\left(\text{\(``\)SDF.txt’’},\mathit{AR},\hat{q}\right)\]
Description
  • \(J\) is the stress distribution factor (Function) (Unitless)
  • \(\mathit{interpZ}\) is the interpZ (Unitless)
  • \(\mathit{AR}\) is the aspect ratio (Unitless)
  • \(\hat{q}\) is the dimensionless load (Unitless)
Notes
Sourceastm2009
RefByIM:riskFun
RefnameIM:nFL
LabelNon-factored load
Input\({\hat{q}_{\text{tol}}}\), \(E\), \(h\), \(a\), \(b\)
Output\(\mathit{NFL}\)
Input Constraints\[a\gt{}0\]\[0\lt{}b\leq{}a\]
Output Constraints
Equation\[\mathit{NFL}=\frac{{\hat{q}_{\text{tol}}}\,E\,h^{4}}{\left(a\,b\right)^{2}}\]
Description
  • \(\mathit{NFL}\) is the non-factored load (\({\text{Pa}}\))
  • \({\hat{q}_{\text{tol}}}\) is the tolerable load (Unitless)
  • \(E\) is the modulus of elasticity of glass (\({\text{Pa}}\))
  • \(h\) is the minimum thickness (\({\text{m}}\))
  • \(a\) is the plate length (long dimension) (\({\text{m}}\))
  • \(b\) is the plate width (short dimension) (\({\text{m}}\))
Notes
  • \({\hat{q}_{\text{tol}}}\) is defined in IM:tolLoad.
  • \(E\) comes from A:standardValues.
  • \(h\) is defined in DD:minThick and is based on the nominal thicknesses.
  • \(a\) and \(b\) are the dimensions of the plate, where (\(a\geq{}b\)).
Sourceastm2009
RefByIM:calofCapacity
RefnameIM:dimlessLoad
LabelDimensionless load
Input\(q\), \(E\), \(h\), \(\mathit{GTF}\), \(a\), \(b\)
Output\(\hat{q}\)
Input Constraints\[a\gt{}0\]\[0\lt{}b\leq{}a\]
Output Constraints
Equation\[\hat{q}=\frac{q\,\left(a\,b\right)^{2}}{E\,h^{4}\,\mathit{GTF}}\]
Description
  • \(\hat{q}\) is the dimensionless load (Unitless)
  • \(q\) is the applied load (demand) (\({\text{Pa}}\))
  • \(a\) is the plate length (long dimension) (\({\text{m}}\))
  • \(b\) is the plate width (short dimension) (\({\text{m}}\))
  • \(E\) is the modulus of elasticity of glass (\({\text{Pa}}\))
  • \(h\) is the minimum thickness (\({\text{m}}\))
  • \(\mathit{GTF}\) is the glass type factor (Unitless)
Notes
  • \(q\) is the 3 second duration equivalent pressure, as given in DD:calofDemand.
  • \(a\) and \(b\) are the dimensions of the plate, where (\(a\geq{}b\)).
  • \(E\) comes from A:standardValues.
  • \(h\) is defined in DD:minThick and is based on the nominal thicknesses.
  • \(\mathit{GTF}\) is defined in DD:gTF.
Sourceastm2009 and campidelli (Eq. 7)
RefByIM:stressDistFac
RefnameIM:tolLoad
LabelTolerable load
Input\(\mathit{AR}\), \({J_{\text{tol}}}\)
Output\({\hat{q}_{\text{tol}}}\)
Input Constraints\[\mathit{AR}\geq{}1\]
Output Constraints
Equation\[{\hat{q}_{\text{tol}}}=\mathit{interpY}\left(\text{\(``\)SDF.txt’’},\mathit{AR},{J_{\text{tol}}}\right)\]
Description
  • \({\hat{q}_{\text{tol}}}\) is the tolerable load (Unitless)
  • \(\mathit{interpY}\) is the interpY (Unitless)
  • \(\mathit{AR}\) is the aspect ratio (Unitless)
  • \({J_{\text{tol}}}\) is the tolerable stress distribution factor (Unitless)
Notes
Sourceastm2009
RefByIM:nFL
RefnameIM:sdfTol
LabelTolerable stress distribution factor
Input\(\mathit{LDF}\), \({P_{\text{b}\text{tol}}}\), \(E\), \(a\), \(b\), \(m\), \(k\), \(h\)
Output\({J_{\text{tol}}}\)
Input Constraints\[0\leq{}{P_{\text{b}\text{tol}}}\leq{}1\]\[a\gt{}0\]\[0\lt{}b\leq{}a\]
Output Constraints
Equation\[{J_{\text{tol}}}=\ln\left(\ln\left(\frac{1}{1-{P_{\text{b}\text{tol}}}}\right)\,\frac{\left(a\,b\right)^{m-1}}{k\,\left(E\,h^{2}\right)^{m}\,\mathit{LDF}}\right)\]
Description
  • \({J_{\text{tol}}}\) is the tolerable stress distribution factor (Unitless)
  • \({P_{\text{b}\text{tol}}}\) is the tolerable probability of breakage (Unitless)
  • \(a\) is the plate length (long dimension) (\({\text{m}}\))
  • \(b\) is the plate width (short dimension) (\({\text{m}}\))
  • \(m\) is the surface flaw parameter (\(\frac{\text{m}^{12}}{\text{N}^{7}}\))
  • \(k\) is the surface flaw parameter (\(\frac{\text{m}^{12}}{\text{N}^{7}}\))
  • \(E\) is the modulus of elasticity of glass (\({\text{Pa}}\))
  • \(h\) is the minimum thickness (\({\text{m}}\))
  • \(\mathit{LDF}\) is the load duration factor (Unitless)
Notes
  • \({P_{\text{b}\text{tol}}}\) is entered by the user.
  • \(a\) and \(b\) are the dimensions of the plate, where (\(a\geq{}b\)).
  • \(m\), \(k\), and \(E\) come from A:standardValues.
  • \(h\) is defined in DD:minThick and is based on the nominal thicknesses.
  • \(\mathit{LDF}\) is defined in DD:loadDurFactor.
Sourceastm2009
RefByIM:tolLoad
RefnameIM:probOfBreak
LabelProbability of breakage
Input\(B\)
Output\({P_{\text{b}}}\)
Input Constraints
Output Constraints\[0\leq{}{P_{\text{b}}}\leq{}1\]
Equation\[{P_{\text{b}}}=1-e^{-B}\]
Description
  • \({P_{\text{b}}}\) is the probability of breakage (Unitless)
  • \(B\) is the risk of failure (Unitless)
Notes
Sourceastm2009 and beasonEtAl1998
RefByIM:isSafePb
RefnameIM:calofCapacity
LabelLoad resistance
Input\(\mathit{NFL}\), \(\mathit{GTF}\), \(\mathit{LSF}\)
Output\(\mathit{LR}\)
Input Constraints
Output Constraints
Equation\[\mathit{LR}=\mathit{NFL}\,\mathit{GTF}\,\mathit{LSF}\]
Description
  • \(\mathit{LR}\) is the load resistance (\({\text{Pa}}\))
  • \(\mathit{NFL}\) is the non-factored load (\({\text{Pa}}\))
  • \(\mathit{GTF}\) is the glass type factor (Unitless)
  • \(\mathit{LSF}\) is the load share factor (Unitless)
Notes
  • \(\mathit{LR}\) is also called capacity.
  • \(\mathit{NFL}\) is defined in IM:nFL.
  • \(\mathit{GTF}\) is defined in DD:gTF.
Sourceastm2009
RefByIM:isSafeLR
RefnameIM:isSafePb
LabelSafety Req-Pb
Input\({P_{\text{b}}}\), \({P_{\text{b}\text{tol}}}\)
Output\(\mathit{isSafePb}\)
Input Constraints\[0\leq{}{P_{\text{b}}}\leq{}1\]\[0\leq{}{P_{\text{b}\text{tol}}}\leq{}1\]
Output Constraints
Equation\[\mathit{isSafePb}={P_{\text{b}}}\lt{}{P_{\text{b}\text{tol}}}\]
Description
  • \(\mathit{isSafePb}\) is the probability of glass breakage safety requirement (Unitless)
  • \({P_{\text{b}}}\) is the probability of breakage (Unitless)
  • \({P_{\text{b}\text{tol}}}\) is the tolerable probability of breakage (Unitless)
Notes
  • If \(\mathit{isSafePb}\), the glass is considered safe. \(\mathit{isSafePb}\) and \(\mathit{isSafeLR}\) (from IM:isSafeLR) are either both True or both False.
  • \({P_{\text{b}}}\) is defined in IM:probOfBreak.
  • \({P_{\text{b}\text{tol}}}\) is entered by the user.
Sourceastm2009
RefByIM:isSafeLR and FR:Check-Glass-Safety
RefnameIM:isSafeLR
LabelSafety Req-LR
Input\(\mathit{LR}\), \(q\)
Output\(\mathit{isSafeLR}\)
Input Constraints\[\mathit{LR}\gt{}0\]\[q\gt{}0\]
Output Constraints
Equation\[\mathit{isSafeLR}=\mathit{LR}\gt{}q\]
Description
  • \(\mathit{isSafeLR}\) is the 3 second load equivalent resistance safety requirement (Unitless)
  • \(\mathit{LR}\) is the load resistance (\({\text{Pa}}\))
  • \(q\) is the applied load (demand) (\({\text{Pa}}\))
Notes
  • If \(\mathit{isSafeLR}\), the glass is considered safe. \(\mathit{isSafePb}\) (from IM:isSafePb) and \(\mathit{isSafeLR}\) are either both True or both False.
  • \(\mathit{LR}\) is defined in IM:calofCapacity and is also called capacity.
  • \(q\) is the 3 second duration equivalent pressure, as given in DD:calofDemand.
Sourceastm2009
RefByIM:isSafePb and FR:Check-Glass-Safety